
 Proceedings of the 2004 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2004

ISBN 555555555/$10.00  2003 IEEE

Abstract: This paper introduces an intrusion-detection
device named honeyfiles. Honeyfiles are bait files intended
for hackers to access. The files reside on a file server, and
the server sends an alarm when a honeyfile is accessed. For
example, a honeyfile named “passwords.txt” would be
enticing to most hackers. The file server’s end-users create
honeyfiles, and the end-users receive the honeyfile’s alarms.
Honeyfiles can increase a network’s internal security
without adversely affecting normal operations. The
honeyfile system was tested by deploying it on a honeynet,
where hackers’ use of honeyfiles was observed. The use of
honeynets to test a computer security device is also
discussed. This form of testing is a useful way of finding the
faulty and overlooked assumptions made by the device’s
developers.

Index terms – deception, intrusion detection, computer
security, file servers

I. INTRODUCTION

Honeyfiles are an intrusion detection mechanism based on
deception. Specifically, a honeyfile is a bait file that is
intended for hackers to open, and when the file is opened,
an alarm is set off. For example, a file named
passwords.txt could be used as a honeyfile on a
workstation. Hackers who gain unauthorized access to
the workstation will be lured by the file’s name, and when
they open the file an alarm will be triggered.

The concept of deploying bait files against hackers was
pioneered by Cliff Stoll during his investigation of the
German hackers who had penetrated his system at
Lawrence Berkeley Labs, and elsewhere, in search of
defense information that could be sold to the KGB [1].
To determine the origin of the attacks, Stoll needed a way
of keeping the hackers on-line long enough to trace their
connection. This was done by creating bait files that
would appeal to the hackers and keep them occupied.
The honeyfiles described in this paper extends Stoll's

 This research was made possible by funding from The
Office of Net Assessment, in the Office of the Secretary of
Defense.

concept to an automated intrusion-detection system for
end users. It monitors all file accesses and provides
alarms whenever the bait files are accessed.

Honeyfiles are implemented as a file server enhancement,
and the file server’s users can make any of their files a
honeyfile. Alarms are sent by e-mail directly to the user,
and services can be used to securely forward the e-mail to
a phone or pager. With honeyfiles, detection mechanisms
can be effectively deployed, as they are placed by the end
users who are intimately familiar with the network’s file
spaces. In addition, when an alarm is sent, those end
users can easily and effectively interpret it.

Honeyfiles can be used to detect unauthorized access to
computers whose file space is mounted from a file server.
For all but the smallest of organizations, standard industry
practice is to store user and application data on file
servers. By implementing the alarm system on the file
server, honeyfiles provide defense in depth for the file
server’s clients. Also, in protecting the clients, honeyfiles
can detect unauthorized access gained through unknown
attacks, as well as unauthorized access gained through
unintended file-access permissions.

When effectively deployed, it will be difficult for hackers
to avoid honeyfiles, and honeyfiles show potential for
avoiding some of the problems frequently encountered by
network intrusion-detection systems (NIDSs), such as
high false-positive rates and also high false-negative rates
for unknown attacks. Honeyfiles offer several additional
benefits, such as the opportunity to increase a network’s
internal security without impairing its normal operations.
Further, the honeyfile system can be used to detect
unauthorized access to real files (in addition to bait files),
and this provides substantial advantages over alternative
techniques such as cryptographic checksums for detecting
file modification.

A prototype honeyfile system has been implemented on
the Network File Server (NFS), and it has been tested by
subjecting it to hackers. Honeyfiles, and the prototype,
are further described in the following sections.

Honeyfiles: Deceptive Files for
Intrusion Detection

Jim Yuill, Mike Zappe, Dorothy Denning, and Fred Feer

 Proceedings of the 2004 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2004

ISBN 555555555/$10.00  2003 IEEE

file-server's
files

honeyfile users:
(user id & email @)

honeyfile detector:
detects honeyfile access

honeyfile list:
(file name & user id)

honeyfile user interface:
list, add, or delete

records

honeyfile alert log:
* file name & user id
* forensic info

email-to-
phone
service

file-
system
access

honeyfile
user

user's
phone

honeyfile-system datahoneyfile-system functions

File Server with Honeyfile System

1

4

5

3

6

7

honeyfile alarm system:
send email alerts2

Figure 1 : The honeyfile system

II. THE HONEYFILE SYSTEM

Honeyfiles are implemented by a honeyfile system, and it
provides the necessary file-system and alarm functions.
The file-system functions are implemented as an
enhancement to a network file server, as illustrated in
Figure 1. The system’s components are numbered in the
figure and their descriptions follow.

Any file within the user’s file space can be a honeyfile.
The honeyfile system provides an interface whereby file-
server users specify their honeyfiles (1). A file records
the system’s honeyfiles (5). Each record contains a file
name and user ID. Honeyfile alarms are sent as email
messages, so the user also provides an email address to be
used. The email messages are called email alerts, or
simply alerts. A file records the system’s users (4). Each
record contains a user ID and email address.

To detect access to honeyfiles, the honeyfile system
monitors all file access on the file server (3). When a
honeyfile is accessed, an alert is sent (2), and it is logged
(6). The alert includes the name of the opened honeyfile,
and forensic information for incident response, such as
the IP address of the computer that opened the file.

The network can be configured for the email alerts to be
sent in a secure manner. Ideally, they will be sent to an
automated service that will call the user’s cell phone and
digitally display the email message (7). This ensures
secure delivery of the alert should the user’s mail client
also be compromised. Phone delivery also enables the
user to be notified while away from his computer. We
implemented a prototype honeyfile system for NFS, on
RedHat Linux 9. We plan to distribute the prototype as
open source. The prototype is working, documented and
tested. This paper is an abridgement of the prototype’s
documentation.

III. USING HONEYFILES

Honeyfiles can detect the hacker’s investigation and
copying of files, including:
• the hacker’s personal perusal of the file space.

Hackers can be tricked into opening files with
alluring names that indicate the file is of value.

• the hacker’s use of search tools to find particular
types of files, e.g., file names containing the string
“password”. These tools can examine file names or

 Proceedings of the 2004 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2004

ISBN 555555555/$10.00  2003 IEEE

contents. Honeyfiles can be created to match
common hacker searches.

• the hacker’s use of tools like tar and zip, to copy and
steal the contents of entire directories. Such copying
can be detected by placing honeyfiles in directories
that are likely to be stolen, and the honeyfile’s name
will blend in with the other files, e.g., “sysrun1.dll”.

There are four types of files that are generally of interest
to hackers, and that can often be used as honeyfiles:
• files with information about accessing and using

other systems, such as password files (passwords.txt),
user manuals (customer-accounts-system.pdf), and
security documentation (vpn- instructions.doc),

• system or application programs that the hacker may
run, but that authorized users would not run, such as
the gcc compiler,

• files that contain evidence of the attack, such as log
files, and

• files that contain information of use other than
hacking, such as credit card numbers, intellectual
property, expected stock market prices, and military
intelligence.

A honeyfile should be named and located in such a way
that its owner will not be inclined to open it accidentally.
One technique is to give a honeyfile a name that appears
unusual only to its owner. The unusual name can help jog
the owner’s memory and recognize the honeyfile. For
example, a honeyfile password file could be named
complete-passwords.txt. Its owner has no partial
password files, so the prefix “complete” will help him
recognize the honeyfile.1

Honeyfiles can contain deceptive content, such as fake
user-IDs and passwords. Deceptive file-content can take
on a plethora of uses and forms, and it can be used
independently of honeyfiles. In order to concentrate on
central honeyfile functions, this paper does not address
deceptive content in honeyfiles. Instead, it focuses on
honeyfile deceptions involving just file system
information, i.e., the file’s location and its directory entry,
including its name.

IV. HONEYFILE USES

This section addresses honeyfiles’ detection capabilities,
tactical capabilities, and ease of use.

1 Unless stated otherwise, this paper’s masculine
pronouns refer to both men and women.

A. Detection Capabilities

Honeyfiles’ detection capabilities include the following:

• Honeyfiles can detect unauthorized access to

computers and file systems:
The primary strength of honeyfiles is their ability to
detect unauthorized access to computers whose file-space
resides on a file server. For example, a workstation stores
its user file-space on a file server, and the workstation
automatically mounts the file-space at boot time. If a
hacker breaks into the workstation, his presence will be
detected if he opens a honeyfile within the user file space.

In general, honeyfiles detect unauthorized access to the
file spaces on a file server, including: 1) compromise of
the file space’s user ID and password, 2) compromise of
weak or defective authentication mechanisms on the file
server, e.g., NFS’ notoriously weak authentication, and
3) exploitation of errors made in granting file-space
permissions, e.g., accidentally making the file space
“world readable”.

• Honeyfiles can be used to detect unauthorized access

gained through unknown attacks:
Honeyfiles detect the hacker after he gains unauthorized
or unintended access. The detection mechanism is
independent of the specific techniques used to gain
access. This is one of honeyfiles’ primary contributions.
Honeyfiles offer a unique opportunity for detecting
attackers who are able to defeat conventional defenses.
This makes honeyfiles especially useful for protecting
high-value systems that are subject to such skilled attacks.

• Hackers can be highly vulnerable to honeyfile

deceptions:
Honeyfiles take advantage of several deception
vulnerabilities in most hackers’ intelligence collection and
analysis: 1) when hackers initially access a file space,
they must search it in order to locate valuable data. If the
hacker’s search can be anticipated, honeyfiles can be
placed where he is likely to encounter them. 2) The
hacker’s limited knowledge of the file space makes it
difficult for him to discern what truly belongs there, and
his naiveté makes it easy to create deceptive honeyfiles.
3) It can be very difficult for the hacker to detect a
honeyfile before opening it. The honeyfile deception is
created using a small amount of information, i.e., the
file’s directory entry, and usually, there is no way for the
hacker to cross-verify the information, and 4) In most
instances, if the target wants to know a honeyfile’s
contents, his only option is to open the file and trigger the
alarm.

 Proceedings of the 2004 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2004

ISBN 555555555/$10.00  2003 IEEE

• Honeyfiles can be used to protect a wide variety of
files and computer systems:

A honeyfile can be almost any file stored on a file server.
In addition to regular data files, they can be files used by
application programs, such as attachments within a mail
client. For example, a company’s executive email
discloses corporate plans that will predictably affect the
company’s stock price. Such information could be
extremely valuable to hackers. Security personnel can
work with the executives to place honeyfiles within their
mail clients. Honeyfiles can also be used to protect
application programs. For example, a web-server’s cgi-
bin directory can be populated with empty honeyfiles
named after notoriously vulnerable scripts.

• Honeyfiles show potential for avoiding some of the

problems encountered by network intrusion-detection
systems (NIDSs):

NIDSs are typically very weak at detecting unknown
attacks, whereas honeyfiles can detect unknown attacks
and even access gained through unintentional file-access
permissions. Also, NIDSs can generate an exorbitant
volume of false alarms. In contrast, honeyfiles show the
potential for having a much lower false alarm rate.
Further, with NIDSs, false alarms are often investigated
by a centralized security group that does not work directly
with the protected data, making investigation difficult. In
contrast, honeyfile users can accurately and easily dismiss
many false alarms because of their familiarity with the
protected data.

Honeyfiles make it possible for alarms to be deployed by
the personnel who create and manage information assets.
In contrast, when NIDSs are deployed by a centralized
security group, it can be difficult for them to accurately
understand the network’s changing information assets.

• The honeyfile system can be used to detect

unauthorized access to real files, and it offers some
substantial advantages over cryptographic
checksums:

In addition to detecting access to deceptive honeyfiles, the
honeyfile system can be used to detect access to real files.
For example, when a workstation user leaves work for the
day, he could use the honeyfile system to set alarms for
all of his files.

The honeyfile system can be easily extended to provide
alerts for honeyfiles when they are changed. A popular
technique for detecting file changes involves creating and
storing cryptographic checksums. The files’ checksums
are periodically recalculated to detect changes to the files.
Tripwire is a commercial product that uses this checksum
technique.

For detecting changed files on a file server, the extended
honeyfile system provides two substantial improvements
over the use of checksums: 1) the honeyfile system
detects changes when they occur, whereas the checksum
technique detects changes during periodic, and often
infrequent, execution, and 2) the honeyfile system is
simpler than the checksum technique. The honeyfile
system resides on the file server and an end user only has
to specify the honeyfiles. With the checksum technique,
the checksums must be periodically calculated by the end
user, or he must grant file access to a separate system that
calculates the checksums. If the user calculates the
checksums, he must securely store the binaries and
checksums.

For a balanced assessment of checksums, it should be
noted that checksums can protect local file systems,
whereas honeyfiles can not. Also, the use of both
checksums and honeyfiles can provide defense in depth
for detecting file changes.

B. Tactical Capabilities

Honeyfiles’ tactical capabilities stem mostly from: 1)
decentralized deployment: the network’s end users create
and place alarms, and 2) centralized implementation: the
alarm mechanism resides on the file server rather than on
its clients.

• By enabling end-users to create alarms, the detection

mechanisms can be effectively deployed and the
alerts effectively interpreted:

If honeyfiles are created and placed well, it can be
difficult for hackers to avoid them, resulting in a low false
negative rate. End users are intimately familiar with the
data they create and manage. Honeyfiles make it possible
for users to create and place alarms where they are most
needed and where they will be most effective. With some
basic instruction on security and honeyfile tactics, users
can effectively deploy honeyfiles. Also, end users can
evaluate and improve their alarms’ effectiveness because
they receive alerts directly. Further, end users can adapt
their honeyfile use as the network and its threats change.

Honeyfile users can accurately discern between true and
false positives because they create the honeyfiles and
receive the alerts. For instance, if a user accidentally
opens a honeyfile, the resultant alert can be recognized as
a false positive. If an alert is sent when the user is not
accessing his file space, the alert can be recognized as a
true positive.

• Honeyfiles support defense-in-depth for the file

server’s clients:

 Proceedings of the 2004 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2004

ISBN 555555555/$10.00  2003 IEEE

Honeyfiles provide the file server’s clients with an alarm
system that resides outside of the client itself, and this
adds a layer of depth to the client’s defenses. When a
hacker breaks into a client, the honeyfile’s alarm
mechanism is on the file server, not on the client. If the
honeyfile’s alarm mechanism was on the client, the alarm
would be vulnerable to attack or detection by the hacker,
especially when the hacker has “rooted” the client
computer. Alerts are sent by e-mail, and they can be
made to travel over a secure channel.

• Honeyfiles can provide the security function of

deterrence, and they can support incident response:
In addition to detecting attacks, honeyfiles can deter
attacks. Honeyfiles have an affect that is similar to
landmines: if hackers know honeyfiles are being used,
the use can dissuade them from hacking, and the use can
slow hackers down by making them cautious and
uncertain. Honeyfiles are also useful for incident
response. Investigators can view all of the alerts for a
network, and collectively, they may reveal a hacker’s
capabilities, intentions, or courses of action.

C. Ease of Use

Honeyfiles’ ease of use is advantageous to both end users
and security administrators:

• Honeyfiles can enhance a network’s internal security

without impairing normal operations:
Networks typically use a relatively low level of internal
security, as additional security is burdensome and costly.
For example, extra access controls make resource sharing
difficult, and making IDSs more sensitive increases their
false alarm rates. Honeyfiles can provide a means of
increasing internal security without impairing operations.
Honeyfiles have little adverse affect on legitimate
computer use. Also, honeyfiles can be an effective
deterrent for insider hackers because they, like all other
network users, will have been informed of the honeyfiles’
availability and use.

• Honeyfiles are an effective deception because they

can be easily created, require little falsehood, and
involve little risk:

A honeyfile is integrated within a real file space, and this
real context makes the honeyfile deception easy to create
and difficult to detect. Also, honeyfiles themselves
involve little falsehood—just a directory entry. Further,
honeyfiles involve little risk.

• Implementing the alarm system on the file server

makes honeyfiles available to almost all network
computers:

Honeyfiles can be created by any computer that uses the
file server. Honeyfiles can be used by computers with a
wide variety of operating systems and file systems. The
alarm system does not have to be ported to the network’s
various operating systems, e.g., Windows and Unix.
Also, having a single alarm system makes it easier to train
users.

• Implementing the alarm system on the file server

centralizes security management functions:
Having a single alarm system makes the system’s
maintenance and defense easier, as the system resides in
one place, rather than on each of the client computers.
Further, having a single alarm system makes it easier for
network security personnel to monitor the alarm system’s
overall use and effectiveness.

V. ENHANCED FUNCTIONS

Earlier sections described basic honeyfile functions, and
this section describes some enhancements that greatly
improve honeyfile use. These improvements have to do
with maintaining realism and controlling alarms.

Operational systems change over time, and so too must
most honeyfiles if they are to be believable. A file’s
MAC times record when it was created, last modified, and
last accessed. Honeyfiles that portray in-use files must
have their MAC times periodically updated. The
honeyfile system can solve this problem by periodically
updating MAC times, within user-defined parameters.

If deceptive content is being used, it may also need to
change over time. Although deceptive content is not
addressed here, there is a noteworthy technique for
automatically updating a file’s deceptive content. The
honeyfile’s contents can mirror a source file that is hidden
from the target, and the honeyfile system can periodically
update the honeyfile from the source.

Honeyfile use can also be improved by providing controls
for selectively generating alerts. Some processes and
users must be permitted to open honeyfiles without setting
off alarms, such as tape-backup processes and the root
user.

VI. HONEYFILE LIMITATIONS

Honeyfiles’ primary limitations are as follows:

• Honeyfiles may not be viable in file spaces that

require regular searching:

 Proceedings of the 2004 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2004

ISBN 555555555/$10.00  2003 IEEE

Honeyfiles will not be viable if file search tools generate
frequent and unavoidable false alarms. The honeyfile
system could accommodate searches by enabling users to
temporarily suspend their honeyfiles’ alerts. However, a
suspension function introduces vulnerabilities: users may
forget to resume honeyfile alerts, and the function could
be hacked.

• Honeyfiles are appropriate for file spaces that are

accessible to one person or a small group:
Honeyfiles are likely to be problematic if placed in a file
space that is used by many people. Honeyfile information
would have to be communicated to the group. Also, false
alarms may be frequent and difficult to investigate.

• Honeyfiles have tactical weaknesses that limit their

use:
Like most deceptions, honeyfiles provide uncertain
effectiveness against an individual attack. Many other
security measures, such as strong encryption, are much
more certain. Also, honeyfile use will be limited if the
target does not tend to explore the file system.

There are some circumstances in which honeyfiles can be
defeated. There are ways in which a hacker can identify
real files, and if he opens only them, he will avoid
honeyfiles. For example, a hacker can use a keystroke
logger to learn what files are being used, and then open
only them. Another honeyfile vulnerability is overloading
of the alert mechanism.

• Honeyfiles require end-user involvement and skill:
Effective honeyfile deployment requires user
participation. It cognitively taxes users by requiring them
to manage and track honeyfiles. Also, it requires users to
have some security savvy as well as adeptness with
computers. Not all users will have the time or skills
needed to use honeyfiles. However, security personnel
can provide some simple training that will be sufficient
for many users. Another potential cost of honeyfiles is
the inadvertent deception of friendly personnel.

VII. USING A HONEYNET TO TEST HONEYFILES

The honeyfile system was tested by deploying it on the
honeynet and thereby subjecting it to hacking. Three
hacking incidents were observed, and each involved a
different hacker. The three hackers were students from
North Carolina State University who are skilled in
computer security. The hackers accessed a honeyfile
system containing error reports and manuals for a
mainframe system. Each of the hackers was detected by
at least one honeyfile. The hackers did not find the file

space very interesting, and they did not search it
diligently. This suggests that honeyfiles are more likely
to be detected if they are near the file space’s root, where
the hacker will start searching.

Honeynets show much promise as a means for testing
security devices. They provide a realistic setting in which
hackers can test the device. The testing can be performed
unwittingly by real hackers or by those recruited for the
task. There is a significant advantage in using testers
from outside of the security device’s development team.
Outside testers may reveal the developers’ faulty and
overlooked assumptions. Such errors are a common
source of security vulnerabilities, and they are very
difficult for developers to find themselves.

Building the honeynet was non-trivial and substantially
more time consuming than we expected. Constructing
deceptive files, file content, and system footprints (e.g.,
file time-stamps) was especially challenging, as all the
falsehood had to be made consistent and believable.

VIII. CONCLUSION

After years of research and development, computer
security remains an error-prone task and, in some
respects, a loosing battle. Computer security’s chronic
problems call for wholly new approaches. Deception
works in a fundamentally different way than conventional
security. Conventional security tends to work directly
with the hacker’s actions, e.g., to prevent them or to
detect them. Deception manipulates the hacker’s thinking
to make him act in a way that is advantageous to the
defender. Being fundamentally different, deception can
be strong where conventional security is weak.
Honeyfiles are a promising tool for intrusion detection.
They offer significant advantages where conventional
intrusion detection is weak. A prototype honeyfile system
has been constructed and tested, and we plan to distribute
it as open source.

IX. REFERENCES

[1] Stoll, C. The cuckoo's egg, Doubleday, 1989.

X. AUTHORS

 Proceedings of the 2004 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2004

ISBN 555555555/$10.00  2003 IEEE

Jim Yuill is a PhD student in the Computer Science
Department at North Carolina State University. This
paper is part of his thesis research. Jim previously
worked at IBM in operating systems development.
jimyuill-at-pobox.com

Mike Zappe built the honeyfile prototype. He is
currently a Unix kernel developer at Seclarity. zapman-
at-zappe.us

Dr. Dorothy Denning is a Professor in the Department of
Defense Analysis at the Naval Postgraduate School. She
is an ACM Fellow, and the recipient of several awards,
including the National Computer Systems Security
Award. dedennin-at-nps.navy.mil

Fred Feer is retired from a career with the U.S. Army
counterintelligence, CIA, RAND and independent
consulting. Deception has been an interest and area of
professional specialization for over 40 years. ffeer-at-
comcast.net

