
ABSTRACT

YUILL, JAMES JOSEPH. Defensive Computer-Security Deception Operations:

Processes, Principles and Techniques. (Under the direction of Dr. Mladen Vouk and

Dr. Ana I. Antón.)

This dissertation is concerned with the processes, principles and techniques that are

involved in deception-operations for computer-security defense. In this work, computer

security deception-operations are defined as the planned actions taken to mislead hackers and

thereby cause them to take (or not take) specific actions that aid computer-security defenses.

Computer security researchers have investigated hackers’ use of deception to attack networks

and the deceptive honeypot systems used to defend networks. However, relatively little has

been done to systematically model and examine computer security deception-operations.

This work addresses these issues by focusing on deception for computer-security defense.

The four main contributions of this dissertation are:

1) A process model for deception operations: this model, which is based on military

deception theory and practice, provides deception planners with a framework for conducting

deception operations. The framework includes a set of processes, principles and techniques.

2) A process model of deceptive hiding: this model aids the defender in developing

new hiding techniques and in evaluating existing techniques. Deceptive hiding is modeled as

defeating the target’s discovery processes: direct observation, investigation based on

evidence, and learning from others.

3) Two novel deception-based intrusion detection systems: the two deception models

informed the design and evaluation of these systems. The Honeyfiles system extends the

network file system to provide bait files for hackers. These files trigger an alarm when

opened. The Net-Chaff system employs computer-impersonations to detect and contain

hacker’s network scans within an intranet.

4) Experiments and evaluation: a prototype Honeyfile system was implemented, and

the Net-Chaff system was simulated and modeled analytically. This work, and subsequent

experimentation, provide exploratory and confirmatory assessment of the two deception

models. The experimental portion of this work reveals that: (a) when the Honeyfiles

prototype is deployed on a deceptive network, and when subjected to hacking, it is observed

to be an effective means for intrusion detection, and (b) the Net-Chaff system can reliably

detect and contain intranet scans before they access vulnerable computers.

(c) 2006 James Joseph Yuill

DEFENSIVE COMPUTER-SECURITY DECEPTION OPERATIONS:

PROCESSES, PRINCIPLES AND TECHNIQUES

by

JAMES JOSEPH YUILL

A dissertation submitted to the Graduate Faculty of

North Carolina State University

in partial fulfillment of the

requirements for the Degree of

Doctor of Philosophy

COMPUTER SCIENCE

Raleigh

2006

APPROVED BY:

___________________________ ____________________________

Dr. Donald Bitzer Dr. Dorothy Denning

___________________________ ____________________________

Dr. Mladen Vouk Dr. Ana I. Antón

Co-chair of Advisory Committee Co-chair of Advisory Committee

 ii

Dedicated to the Memory of Jim Settle, FBI (ret.)

in gratitude for his friendship, support and tutelage,

without which I could not have completed this work

 iii

Biography

Jim Yuill has over twenty years of experience in computer-related work. He has a

B.S. in Computer Science from North Dakota State University and a Masters of Computer

Science from North Carolina State University. While at NCSU, Jim taught over a dozen

graduate and undergraduate courses. Jim also worked for IBM in operating-systems

development.

 iv

Acknowledgements

This dissertation is the culmination of over eight years of research. I have long

awaited this opportunity to thank those who contributed to this work and made it possible.

I’d like to thank my PhD advisors and committee for working patiently with me over

these many years. I’d very much like to thank Dr. Vouk for all the time he generously spent

with me, especially given his busy schedule as department head. Also, I’m grateful that, as a

boss, Dr. Vouk is kind and forbearing. Dr. Vouk’s requirement for analytical models led to

the net-chaff research, and it was developed under his advising. Dr. Bitzer suggested the

rate-based models that were developed for net-chaff, as well as the Poisson model. Dr.

Antón’s advising greatly improved my writing skills, and helped me to be much better

focused. Dr. Felix Wu was my first advisor, before he left NCSU. He kindly allowed me

much freedom in my research, which led to this work in deception.

I owe a special note of thanks to Dr. Denning and Fred Feer for their contribution to

this research. The dissertation’s deception process-models were the result of collaboration

among Dr. Denning, Fred Feer and myself. Dr. Denning was the academic advisor for these

models. Her keen insights, and her exceptional analytical skills, greatly enhanced and

expanded these models. I’m also very grateful to Dr. Denning for serving on my PhD

committee.

Fred Feer is retired from a career in the DoD and U.S. intelligence agencies. Fred

kindly tutored me in deception and security. Fred’s insights on deception are profound and

go beyond the published literature. They had a formative influence on much of this

dissertation. The dissertation’s primary principle, the deception exploit, is Fred’s

contribution.

This dissertation was made possible by the research funding I received. Funding for

net-chaff, and the dissertation itself, was provided by my advisor Dr. Mladen Vouk. The

deception process-models were funded by the DoD, and a major source was Andy Marshall,

Director of Net Assessment at the Office of the Secretary of Defense. My initial research

was funded by Dr. Felix Wu through funding he received from NSA, DARPA, and Nortel.

 v

Funding was also provided by Drs. Anton and Rappa, at NCSU.

I’ve been blessed to collaborate with, and be mentored by, several experts who work

outside of the NCSU Computer Science Department. Their instruction and advising was the

basis for most of this research. Their friendship, encouragement and support enabled me to

persevere and complete this work:

• Dr. Chris Bassford, National War College: this research began with Dr Bassford’s

suggestion to apply the Army’s deception manual to computer security. He also kindly

advised me in my studies of military theory.

• Dr. Bowyer Bell: funding for much of this research was obtained by Dr. Bell. His

untimely death prevented him from seeing the project’s completion. Dr. Bell was an

expert on terrorism, and the co-author of a seminal book on deception theory. The

dissertation’s flow-chart of the deception process is primarily from his research.

• Jim Settle, FBI, ret.: Jim’s tutelage greatly improved my understanding of real-world

computer security. Before Jim died from cancer last spring, I told him I would dedicate

the dissertation to him, in gratitude. Jim was chief of the FBI’s first computer crime

squad. His security savvy and wisdom were amazing.

• Colonel G. I. Wilson, USMC: my collaboration with Dr. Denning and Fred Feer was

brought about by Col. Wilson. He kindly made possible a number of my other research

accomplishments, such as a presentation we gave at the Office of the Secretary of

Defense, and instruction I received in maneuver warfare.

• Alvin Wallace, USAF CERT: some of the key funding for this research was facilitated

by Alvin. He also made possible several of the presentations I made, including the DoD

Cyber Crime Conference.

• Dr. E. C. Pasour, NCSU Agricultural Economics Department, emeritus: a key part of

my research has been in research methods, and I hope to publish these findings in the

near future. This work was based on Dr. Pasour’s advising in my study of Austrian

Economics.

 vi

• Ken DeLavigne, IBM, ret.: this research is also based on prior study in software

engineering, quality, Austrian Economics, and writing. Ken was my mentor when I

worked at IBM, and he advised me in these studies. I have benefited much from his

wisdom.

Thanks are due to my father, Dr. Stuart Yuill, and to Dr. Allard at Duke University,

for reviewing the net-chaff math models. Dr. Allard also suggested the rationale used for the

Poisson distribution.

A note of thanks is due to my family and close friends, for their support and prayers.

My mom traveled to North Carolina on several occasions to help me prepare my tax filings,

when I was inundated with dissertation research. My friend Ed Trench kindly rebuilt my

car’s engine and front suspension, as a favor, and spared me student loans. In working on

this research, I’ve received help from many others, and wish I could acknowledge them all.

Above all, thanks is due to God. Anything good in this dissertation is ultimately from

Him!

 vii

Table of Contents

List of Tables ... ix

List of Figures .. xi

Nomenclature... xiii

1 Introduction... 1

2 Background and related work ... 8

2.1 Deception processes.. 8

2.2 Scanning and scan defenses .. 11

2.3 Deception use in honeypots and other tools ... 26

2.4 Summary... 27

3 Deception framework.. 29

3.1 Deception operation process ... 29

3.1.1 An overview of deception operations ... 29

3.1.2 Deception planning ... 35

3.1.3 The deception story... 39

3.1.4 Summary of the deception operations model.. 45

3.2 Hiding model .. 47

3.2.1 The process of deceptive hiding ... 49

3.2.2 Direct observation... 50

3.2.3 Investigation.. 56

3.2.4 Learning from other people or agents ... 62

3.2.5 Summary of the hiding model... 65

4 Deception-based intrusion detection systems ... 67

4.1 Net-Chaff: deception-based scan detection and containment................................. 67

4.1.1 Environment and assumptions .. 68

4.1.2 Net-Chaff system .. 69

4.1.3 Requirements .. 78

4.1.4 Summary... 93

4.2 Honeyfiles: deceptive files for intrusion detection ... 94

5 Evaluation ... 95

5.1 Net-Chaff .. 95

5.1.1 Analytical models ... 96

 viii

5.1.2 Simulation... 152

5.1.3 Hiding analysis.. 168

5.1.4 Limitations .. 171

5.1.5 Future research.. 173

5.1.6 Summary of the Net-Chaff analysis.. 176

5.2 Honeyfiles ... 178

5.3 Deception process models... 179

6 Conclusion .. 183

6.1 Main contributions of this work.. 183

6.2 Limitations of this work.. 185

6.3 Future work... 185

7 Bibliography ... 187

8 Appendix... 198

 ix

List of Tables

Table 3.2.2.2-1 : Hiding techniques that defeat the target's sensors 53

Table 3.2.2.2-2 : Hiding techniques that defeat the target's recognition 55

Table 3.2.3.2-1 : Hiding techniques that defeat the target's evidence collection............. 61

Table 3.2.3.2-2 : Hiding techniques that defeat the target's creation of discovery
hypotheses .. 62

Table 3.2.4.2-1 : Techniques for hiding when the target learns from other people’s, or
agents’, discoveries.. 64

Table 4.1.3.1.1-1 : Common types of scans, categorized by the scan objective 80

Table 4.1.3.2.2-1 : Net-Chaff’s uses of deception for defending against scans 91

Table 5.1.1.1.3-1 : Probe-response types... 100

Table 5.1.1.2.4-1 : Computer distribution on network.. 115

Table 5.1.1.2.4-2 : Probe-response type distribution on network................................... 115

Table 5.1.1.2.4-3 : Parameters for probe rate calculations ... 116

Table 5.1.1.2.4-4 : Packets used in TCP scan-and-attack.. 116

Table 5.1.1.2.4-5 : Calculations for individual probe rates, for TCP scan-and-attack 117

Table 5.1.1.2.4-6 : Calculations for individual probe rates, for the web-server TCP ping-
scan ... 117

Table 5.1.1.2.4-7 : Calculation for individual probe rate, for the UDP scan-and-attack
... 118

Table 5.1.1.2.4-8 : Calculations for individual probe rates, for the UDP filtering-scan
with an attack .. 119

Table 5.1.1.3.1-1 : Rates of compromise (computers per second) for the TCP scan-and-
attack .. 121

Table 5.1.1.3.1-2 : Rates of compromise for the UDP scan-and-attack with a filtering-
scan ... 123

Table 5.1.1.3.1-3 : Rates of discovery for the information-retrieval scan...................... 125

Table 5.1.2.1.2.1-1 : The simulation’s probe-response types .. 156

Table 5.1.2.1.2.1-2 : Probe responses, as recorded in the RDB table 157

Table 5.1.2.1.2.1-3 : Probe arrival times at the Net-Chaff WAN server, as recorded in
the RDB table .. 158

Table 5.1.2.2.1-1 : Probe-response distributions for the three simulation runs............ 161

 x

Table 5.1.2.2.1-2 : Containment-specifications for the simulation runs 162

Table 5.1.2.2.2-1 : Summary of comparison using ABS(Pvuln_C_S_sim - Pvuln_C_S_rate) 167

 xi

List of Figures

Figure 3.1.1-1 : Deception as a form of perception (adapted from [Wha82]) 9

Figure 3.1.1.2-1 : The basic deception process ... 31

Figure 3.1.3-1 : The intellectual-property (IP) deception operation 40

Figure 3.2.2.1-1 : The process of direct observation, illustrated by a computer-security
example .. 51

Figure 3.2.4.1-1 : How the target learns from other people’s, or agents’, discoveries ... 63

Figure 4.1.2.1-1 : Net-Chaff architecture.. 71

Figure 4.1.3.1-1 : Examples of probe types... 79

Figure 4.1.3.1.2-1 : TCP scan-and-attack ... 82

Figure 5.1.1.1.2-1 : Scan probes, from Net-Chaff's perspective 98

Figure 5.1.1.1.3-1 : TCP scan-and-attack probes, using serial (non-interleaved) and
parallel (interleaved) transmission .. 102

Figure 5.1.1.3.1-1 : TCP scan-and-attack at 1Mbps .. 122

Figure 5.1.1.3.1-2 : TCP scan-and-attack at 100 Mbps ... 122

Figure 5.1.1.3.1-3 : UDP scan-and-attack with filtering-scans 124

Figure 5.1.1.3.1-4 : The information-retrieval scan ... 125

Figure 5.1.1.3.2-1 : Calculations of PVULN for the default networks............................... 128

Figure 5.1.1.4.1-1 : C̄VULN(b) .. 135

Figure 5.1.1.4.1-2 : C̄VULN(z) ... 136

Figure 5.1.1.4.1-3 : C̄VULN(r̄nc) .. 138

Figure 5.1.1.4.2-1 : x̄ as a function of (Nnc_imp / NNC) ... 141

Figure 5.1.1.4.2-2 : C̄VULN as a function of (Nnc_imp / NNC) ... 142

Figure 5.1.1.4.2-3 : x̄ as a function of (NNC / (NT - NR)) ... 144

Figure 5.1.1.4.2-4 : C̄VULN as a function of (NNC / (NT - NR)) ... 144

Figure 5.1.1.4.2-5 : x̄ as a function of NT.. 146

Figure 5.1.1.4.2-6 : C̄VULN as a function of NT... 146

Figure 5.1.1.4.3-1 : r̄vuln as a function of the network size (NT) 148

Figure 5.1.2.1.1-1 : Overall simulation process .. 154

Figure 5.1.2.1.2.2-1 : RDB table for storing scan outcomes .. 158

 xii

Figure 5.1.2.2.2-1 : Simulation results vs. analytical models for (C̄C_S_sim < 100).......... 164

Figure 5.1.2.2.2-2 : Simulation results vs. analytical models for (C̄C_S_sim ≥ 100).......... 165

Figure 5.1.2.2.2-3 : Simulation results vs. analytical models for Pvuln............................ 167

 xiii

Nomenclature

CND computer network defense

computer security in this dissertation, the term refers to computer-security

defenses, unless stated otherwise

critical vulnerability an enemy vulnerability that permits friendly forces to destroy

an enemy capability that he needs to function effectively

deception exploit a statement of how the target-action will benefit CND. See

deception objective

deception objective the desired result of the deception operation; it consists of:

1) the intended target action, and 2) the deception exploit.

deception-operation for computer security, it is the planned actions taken to

mislead hackers and thereby cause them to take (or not take)

specific actions that aid computer-security defenses

deception story an outline of how the computer system will be portrayed so

as to cause the target to adopt the desired perception, and

take the intended target action

deception planner the person who plans, develops and carries out the deception

operation

denial see hiding

desired perception what the target must believe in order for it to take the

intended target action

footprinting a hacker’s use of publicly available information to learn

about an organization and its network

hiding we consider hiding to be deceptive if it intends to mislead,

and hiding that is not intended to mislead is referred to as

denial. See showing.

Honeyfiles a system that extends the network file system to provide bait

files for hackers. These files trigger an alarm when opened.

honeynet a network of honeypots

honeypots computer systems that are designed to be probed, attacked or

compromised by hackers

intelligence information and knowledge obtained through observation,

investigation, analysis, or understanding

intelligence source something that is used by the hacker to learn about the

network.

 xiv

Net-Chaff a system that employs computer-impersonations to detect and

contain hacker’s network scans within an intranet

planner see deception planner

ruse a trick designed to deceive

scan-and-attack a type of scan, in which the scan probes include an attack

showing deception includes showing what is false and hiding what is

real. See hiding.

target the person the deception operation seeks to deceive

target action a statement of what the hacker is to do (or not do) at some

time and location. It is always stated in terms of specific

actions. See deception objective.

 1

1 Introduction

The research reported in this thesis provides models for designing and conducting

defensive deception operations. The models are based on the underlying nature of deception

and were, as much as possible, made independent of the current technologies. The models

provide a framework for conducting deception operations and include a set of processes,

principles and techniques that were examined and validated as part of the current work. The

deception models informed the design and implementation of two deception-based intrusion

detection systems: Honeyfiles and Net-Chaff. The Honeyfiles system extends the network

file system to provide bait files for hackers and trigger an alarm when opened. The Net-Chaff

system impersonates computers at an intranet’s unused addresses. By using simple and large-

scale impersonations, Net-Chaff can effectively detect and contain hackers’ intranet scans. A

prototype Honeyfile system was implemented, and Net-Chaff was simulated and modeled

analytically. This work provides exploratory and confirmatory assessment of the two

deception models.

1.1 Problem statement

After many years of research and development, computer security remains an error-

prone task, and computer security’s chronic problems call for new approaches. One

component of tools and techniques for achieving security can be deception. In everyday

security, deception plays a relatively prominent role, e.g., leaving the living room lights on to

make burglars think someone is at home. However, in information technology, deception is

often not used, or it plays an implicit role rather than an explicit one. Deception works in a

fundamentally different way than conventional security methods. Conventional security tends

to work directly on, or against, the hacker’s actions, e.g., to detect them or to prevent them.

Deception works by manipulating the hacker’s thinking, to make him act in a way that is

advantageous to the defender. Being fundamentally different, deception can be strong where

conventional security is weak (and vice-versa). While deception is not always useful, it can

be an important and effective way of compensating for conventional security’s inherent

vulnerabilities, and it may be advantageous to combine the two explicitly.

 2

In computer security, an advantage of deception is that it can pit the defender’s

strengths against the hacker’s weaknesses. Hackers often rely heavily, if not exclusively, on a

single source of information—data acquired via the network. Often, the network-based data

can be manipulated to the defender’s advantage. Furthermore, when a hacker first arrives at

the network, he
1
 must learn about the network by investigating it. The investigation includes

scanning and perusing the network itself and computers attached to it. The hacker’s

investigation process, combined with this initial naiveté, can create an unavoidable and

predictable conduit for deception. Typically, the network defender has physical control of his

network, and he knows it well. The defender can exploit the hacker’s investigation process to

supply him with falsehood and thereby attack his decision-making process.

Deception is an integral part of human nature and experience. There are legitimate,

even necessary, reasons for deceiving others, as in sports and games. Deception is a frequent

theme of history, literature, drama, and marketing. Consumers routinely exercise counter-

deception. However, few people use deception in the calculated manner needed for computer

security. As the military deception literature reveals, effectively deceiving an adversary is a

job skill, and it requires an understanding of deception processes, principles and techniques

[JDD96, USA88, USM89]. Deception can be used to attack hackers’ decision-making

processes; thus deception provides an offensive security measure––something computer

security defenders sorely lack.

1.2 Scope of this research

Computer-security deception is defined as the planned actions taken to mislead

hackers and to thereby cause them to take (or not take) specific actions that aid computer-

security defenses.
2
 The deception aims to mislead the hacker into a predictable course of

action or inaction that can be exploited [Dew89]. Tricking a hacker, and making him think a

certain way, is important only as a step toward getting him to make the decision that will

result in the desired action [JDD96]. Thoughts without action are of little computer security

1
 Unless stated otherwise, this paper’s masculine pronouns refer to both men and women.

2
 This definition is adapted from the U.S. DoD definition of military deception [JDD96].

 3

value. Deception includes showing what is false and hiding what is real [BW82, Wha82]. We

consider hiding to be deceptive if it intends to mislead, and hiding that is not intended to

mislead is referred to as denial.

In this dissertation, the term computer security refers to computer-security defenses,

unless stated otherwise. Some of this dissertation’s other terms are defined as: 1) deception

planner, or planner: the person who plans, develops and carries out the deception operation,

2) deception operation: the planned development and deployment of a deception-based

computer security measure, 3) target: the person the deception operation seeks to deceive, 4)

intelligence: information and knowledge obtained through observation, investigation,

analysis, or understanding, 5) ruse: a trick designed to deceive. (A glossary appears after the

table of contents.)

The scope of this research is deception-operations for computer-security defenses.

Deception can be used to provide or enhance computer-security, including incident response,

intelligence, detection, and prevention. The research focuses primarily on the design and

conduct of deception operations for thwarting attacks and for collecting intelligence.

Honeypots are currently one of the most widely used defensive deception technologies

[Spi02]. This work does not focus on honeypots, but it uses them to explore, illustrate, verify,

and validate principles. Additionally, counter deception (i.e., detecting hackers’ deceptions)

and legal issues concerning the use of deception are not addressed. Hackers’ use of deception

and deception for counter attacks (i.e., hacking hackers) are also out of scope. However,

using deception to thwart, or attack, the hacker’s decision-making process is one of the

research’s primary topics.

This research consists of three parts. Two parts are deception models, and an

overview of them is presented next. The third part are systems that use description,

experiments with them, and evaluation of their effectiveness.

 4

1.3 Research overview

1.3.1 Deception process models

Two types of process models were developed for use in computer-security.

• Process models for deception operations:

A set of descriptive and predictive models was developed for use in computer-

security deception operations. These models are formed by synthesizing the principles in the

extensive and disparate military-deception literature, and by adapting them for use in

information technology and computer security. Two other sources are used in developing the

deception-operation models presented here. They are the computer security literature and this

research’s experimental and analytical findings. The contribution of these models is their

extensive coverage of the deception-operation process, their derivation from the stated

sources, and their application to computer security.

The principles of military deception are highly applicable to computer-security

deception. The principles are well documented in the military deception literature (as

described in Chapter 2), and they are based on millennia of experience and thought. The

military deception literature is extensive, and it is also disparate, as the sources cover

different aspects of deception. This research also draws upon the intelligence deception-

literature (also described in Chapter 2). An additional research source is private

communications and collaboration with a deception expert who has had extensive experience

in both military and intelligence deception. This expert has significant insights that do not

appear in the deception literature.

Deception operations vary in the purposes they serve, the networks on which they are

used, and the different types of hackers they target. Some deceptions are simple and reliable;

for example, ping scans can be easily and predictably deceived. In contrast, other deceptions

are complex and uncertain; for example, a honeynet can be large, and there can be many

servers with extensive false content. Although deception operations vary widely, there are

deception processes, principles and techniques that are applicable to many, or even all,

deception operations. Handel, a theoretician of military deception, has observed:

 5

“The basic principles and objectives of reinforcing the desires and perceptions of the

deceived will not change, since human nature and the psychological mechanism of

human perception are ever the same. In terms of its forms and the means employed,

deception will, like war itself, change as new weapons and technologies appear

[Han85].”

For this research, the deception models describe how deception can be used to

advantage in computer security. The models describe the processes followed in deception

operations, and they describe the principles and techniques for developing and conducting

deception operations.

• A process model of deceptive hiding:

A second part of the research is a novel model of deceptive hiding. The model

addresses one component of deception operations, and it extends existing hiding models. The

model is intended for use in developing new hiding techniques and for evaluating existing

hiding techniques. It characterizes deceptive hiding in terms of how it defeats the underlying

processes that an adversary uses to discover a hidden item. An adversary’s process of

discovery can take three forms: direct observation (sensing and recognizing), investigation

(evidence collection and hypothesis formation), and learning from other people or agents.

Deceptive hiding works by defeating one or more elements of these processes.

1.3.2 Systems, experiments, and evaluation

A significant component of deception research requires analysis of human nature.

Often, human behavior and nature are not amenable to quantification, so qualitative analysis

needs to be applied, such as an appropriate non-quantitative deception process-model.

Further, although deception is an integral part of human life, computer-security deception

operations are not. Consequently, to learn more about deception operations, the third part of

the research involves the development of a prototype, simulation, and analytical models, as

well as their use in experiments and evaluation.
3

The two deception models informed the design and implementation of two deception-

based intrusion detection systems. These implementations, and subsequent experimentation,

3
 These insights on research method are from F.A. Hayek, Nobel laureate [Hay52].

 6

provide exploratory and some confirmatory assessment of the two deception models. One of

the systems is a deception-based intrusion detection system called Honeyfiles. A honeyfile is

a bait file that is intended for hackers to open, and when the file is opened, an alarm is set off.

For example, a file named passwords.txt could be used as a honeyfile on a workstation.

Hackers who gain unauthorized access to the workstation will be lured by the file’s name,

and when they open the file an alarm will be triggered. Honeyfiles are implemented as a file

server enhancement, and the file server’s users can make any of their files a honeyfile. A

prototype Honeyfile system was built. The system was tested by deploying it on a deceptive

network and, when subjected to hacking, was observed to be an effective means for intrusion

detection.

The second system impersonates computers on an intranet for the purpose of

detecting and stopping hackers’ port scans. The system is called Net-Chaff, and it

impersonates computers at the intranet’s unused addresses. Net-Chaff only impersonates

computers below the application layer, as this greatly simplifies the implementation, yet still

affords significant advantages over scanners. When Net-Chaff detects a scan, it blocks the

scanner’s network access via the intranet’s routers. Further, Net-Chaff’s use of deception can

significantly slow down scans, reduce the usefulness of scan findings, and lure follow-on

attacks against Net-Chaff’s impersonated computers. Net-Chaff uses concepts from existing

deception-based security systems (e.g., honeyd [Hon05]), and it combines and applies them

in a novel way.

Net-Chaff’s use of deception, and its ability to thwart scans, were assessed using

simulations and analytical models. They confirm that the Net-Chaff system can effectively

thwart scans and that deception plays a significant role in the process. In military theory, a

critical vulnerability is an enemy vulnerability that permits friendly forces to destroy an

enemy capability that he needs to function effectively [MC97]. Network scanning is a key

step in hackers’ reconnaissance, and this makes network scanning’s vulnerability to

deception a critical vulnerability for hackers.

 7

1.4 Expected uses and benefits of this research

Although appealing, deception appears to be used only sparingly in computer

security. Furthermore, at present, the computer security literature does not appear to address,

in depth, the general processes and principles of deception operations. This research provides

such deception models, for developing deception skills and knowledge. Also, this research

presents two novel deception-based computer security tools that can be used for detecting

and preventing attacks.

The overarching expectation is that deception can significantly improve the current

state of computer security. Deception may even be essential in compensating for the intrinsic

limitations of conventional security. There is strong precedent for these expectations. In

adversarial contests observed throughout history—among both men and beasts—deception

plays a pervasive and significant role [BW82].

The rest of this dissertation is structured as follows. Chapter 2 discusses background

information and related work. Chapter 3 presents the deception framework, its process and

associated models. Chapter 4 discusses two deception-based security devices that aid in

intrusion detection: Honeyfiles and Net-Chaff. Chapter 5 discusses how this work has been

evaluated and presents the key lessons learned. Chapter 6 provides a summary of

contributions and limitations of this work, as well as plans for future work.

 8

2 Background and related work

This chapter summarizes the deception and computer-security literature related to this

dissertation. This summary is based on extensive surveys of: 1) the literature on deception

processes for computer security, war fighting, and intelligence, 2) the prior work on

scanning and scan defenses, that is related to the Net-Chaff system, and 3) deception use in

honeypots and other computer security tools. The background and related work from these

surveys is presented in the following three subsections,.

2.1 Deception processes

This dissertation includes two models of deception processes. They are the models of

deceptive hiding and the models for designing computer-security deception operations. This

section surveys the prior work related to the general areas these models address.

2.1.1 An overview of deception processes

Deception is a form of perception in which a target is intentionally led to an incorrect

perception, through the actions of another [Wha82]. Deception, as illustrated in Figure

3.1.1-1, is distinguished from unintentional acts of misrepresentation and from self-induced

acts of misrepresentation (self-deception).

Hiding and showing are both present in any act of deception [BW82]. When showing

the false, the truth must also be hidden. When something is hidden, something else is shown

instead, even if only implicitly. Further, deceptions are often constructed of multiple ruses,

employing both hiding and showing. For example, a honeypot can deceptively impersonate

(i.e., show) a network server, while deceptively hiding a keystroke logger. When a deception

uses both hiding and showing, the deception may be characterized as hiding or showing,

according to the planner’s primary intent. For instance, a server’s banner is modified to

display a false model and version number. The banner is showing falsehood, but the primary

intent is hiding the server’s true model and version from hackers and worms.

 9

perception

misperception accurate
perception

other induced self-induced

intentional
(deception)

unintentional
(unintentional

misrepresentation)

intentional
(self-deception)

unintentional
(e.g., optical

illusion)

Figure 3.1.1-1 : Deception as a form of perception (adapted from [Wha82])

Bell and Whaley offer a taxonomy of deceptive techniques based on three ways of

hiding: masking, repackaging, and dazzling; and three ways of showing: mimicking,

inventing, and decoying [BW82]. This taxonomy has been used in both the military and

computer security literature [USM89, Jul02]. The military deception literature also lists

common types of battlefield deceptions, examples being camouflage, feints (fake attack-

initiation), ruses (tricks designed to deceive), demonstrations (fake force deployment), and

displays (the showing of fake military forces or equipment, e.g., inflatable tanks) [USA88,

Dew89, FN95]. Cohen [Coh98] and Rowe and Rothstein [RR04] have shown how these can

be applied to computer network defense. Rowe and Rothstein have also published a

taxonomy of deception techniques based on semantic cases in computational linguistics such

as agent, instrument, location-from, time-at, and purpose [RR04]. In addition, Rowe has

developed a taxonomy for deception in virtual communities [Row05b]. The taxonomy

applies primarily to computer misuse, and not to computer security.

The hiding model presented in this dissertation extends this earlier work on deception

 10

taxonomies. The model shows how deceptive hiding can be understood in terms of

processes, mainly the discovery processes used by a target to acquire information. Particular

hiding techniques work by defeating elements of these processes.

2.1.2 Deception processes in computer science

Some computer-security literature addresses, at least in part, deception itself. Fred

Cohen led a major deception-research project at Livermore Labs [CLP01, CMS01, Coh98,

Coh00]. His research attempted to statistically characterize the general effectiveness of

deception [CMS01]. The results are of very limited applicability, since such results cannot

adequately address the wide variation in the causative effects in general deception-

operations. Cohen has also applied military deception principles to computer security,

though he only draws from one source on military history and a small collection of military

deception techniques [Coh98].

Rowe and Rothstein have built a probability model based on military deception

techniques. The model is intended for assessing the usefulness of those techniques [RR04].

Unfortunately, the deception model overly simplifies complex phenomena and the

probability model appears to be mathematically flawed. For example, the “appropriateness”

of a deception technique is assigned a number, and that number is used in an equation to rank

deceptions. However, that number is not a cardinal value, but an ordinal value, so its use in

an equation is not valid nor meaningful.

Two Australian researchers are addressing the process and principles of deception

[Hut04, HW00, HW01, HW02]. They present high-level conceptual models for

understanding deception, and the models include deception for both offense and defense.

The models are general and do not provide the level of detail needed for designing specific

deception operations.

2.1.3 Military deception processes

This dissertation presents a model for designing computer-security deception

operations. The model was developed by synthesizing the military and intelligence

 11

deception literature, and applying it to computer security. Deception is a key focus of the

military and intelligence communities [YDF06]. Three U.S. military deception-manuals

provide deception models for different aspects of deception operations. The Joint manual

addresses deception planning for command and control warfare (C2W) [JDD96]; the Army

manual addresses tactical deception [USA78, USA88]; and the Marine Corps manual

addresses strategic deception [USM89]. Useful models are also found in books written by

soldiers and intelligence analysts with expertise in deception [Dew89, Heu81, Mur80].

Civilian researchers, from academia, intelligence contractors, and defense contractors, have

also provided deception models for warfighting [CIA80, DH82b, FN95, Han85]. In all of

this literature, each source addresses a subset of deception. Consequently, the literature

contains a disparate collection of deception processes and principles. Prior to this

dissertation, the only known attempt to synthesize this literature is by the author of the

Marine Corps manual, which addresses strategic deception, not tactical deception [USM89].

In contrast, this dissertation provides a comprehensive synthesis of the military and

intelligence literature’s disparate deception models, and its focus is primarily on the tactical

use of deception.

2.2 Scanning and scan defenses

A major component of this dissertation is the Net-Chaff system, the purpose of which

is scan defense. The related work for Net-Chaff is in the areas of scanning and scan

defenses. They are presented in the following two sections.

2.2.1 Scanning

Net-Chaff’s purpose is to defend against hackers’ active scans. An overview of

scanning is provided here, and it frames the aspects of scanning that are relevant to Net-

Chaff. Further details on scanning are provided with the Net-Chaff description in Chapter

four.

Arkin defines active scanning as, “a technology, which uses stimuli (packets) in order

to provoke a reaction from network elements. According to responses, or lack thereof,

received from the queried network elements, knowledge about a network and its elements

 12

will be gathered” [Ark05]. Passive scanning is an alternative form of scanning. It learns

about network elements by observing network traffic. Research comparing active and

passive scanning indicates that the two techniques find largely disjoint sets of information

[WLZ06]. A major disadvantage of passive scanning is that a significant percentage of its

discoveries can take a very long time, e.g., weeks. Hereafter, active scanning will be referred

to as simply “scanning”, except when it must be differentiated from passive scanning.

There are three major applications of scanning, and each includes tools, techniques

and research that are relevant to Net-Chaff. 1) There are numerous stand-alone scanning

tools, and they are used by hackers and network administrators [MSK03]. One of the best-

known scanners is nmap [Fyo04]. 2) Scanning is also incorporated in programs that are used

to find vulnerable systems and break into them. These programs include vulnerability

scanners (such as Nessus [Nes06]) and worms [Naz04]. 3) Scanning is a topic of research

and development within the field of network management [TB98, VVZ02]. Scanners are

incorporated in network management tools, to perform network discovery. Scanning tools

and techniques will be described in chapter 4.

A number of studies have been conducted to analyze Internet hacking activity,

including the prevalence and content of scans. Monitoring any portion of the Internet

address space reveals incessant activity [PYB04]. There are on-going projects that

continuously monitor and report Internet hacking activity [DS06, ISC06]. On the Internet,

scanning occurs constantly, and in high volume [JPB04, PYB04]. For instance, traffic logs

from the Lawrence Berkeley National Laboratory (LBNL) were examined for an arbitrarily-

chosen day [JPB04]. It showed that 138 different remote hosts scanned LBNL addresses,

with a total of about 8 million connection attempts. A more detailed study found that 13,000

remote scanners had probed LBNL addresses on a particular day.

Other research of Internet scanning activity involves monitoring large numbers of

unused IP addresses on the Internet [HA05, PYB04, YBP04]. These monitoring systems

have been referred to by several names, including Internet sinks, network telescopes, Internet

motion sensors, and black holes. Hereafter, we will refer to systems that monitor large

numbers of IP addresses as sinks. The traffic sent to unused addresses has been termed

 13

background radiation [PYB04]. It is nonproductive traffic that, in general, is either

malicious (from flooding, vulnerability scans, and worms) or benign (from

misconfigurations). Analysis of Internet background radiation shows that it is not only

incessant, but also “complex in structure, highly automated, frequently malicious, potentially

adversarial, and mutates at a rapid pace” [PYB04]. Internet background radiation poses

significant challenges for intrusion detection.

In contrast, Net-Chaff works within a secure intranet. This intranet has a secure

perimeter that provides good, though not perfect, protection from direct Internet access. Net-

Chaff is not intended for use on networks that are directly accessible from the Internet, e.g.,

typical campus networks. Scans on the Internet are incessant (part of the background

“noise”), and thus far, there appears to be little that can be done to stop them.

We are not aware of formal published research on the incidence of scans within such

secure intranets, although a lot of anecdotal evidence exists, as well as a number of internal

reports in a wider range of organizations However, it is reasonable to assume that within

this environment, unauthorized scans are relatively infrequent, and worthy of detection,

containment and investigation. Sources of scans within protected intranets include attacks

from authorized personnel (i.e., insiders), worm-infected laptops, and unintended network

paths through the perimeter [Naz04].

Insider attacks can come from employees and contractors, and also from trusted

networks (e.g., VPN connections from business partners). The Wall Street Journal reports

that “23% of 229 U.S. organizations with more than 1,000 employees had at least one

internal security breach in 2004, while another 27% didn't know whether or not their

networks had ever been compromised -- from inside or outside” [Yua05]. The Code Red and

Nimda worms were able to deeply penetrate protected networks [Naz04].

2.2.2 Scan defenses

In this section, Net-Chaff is compared and contrasted with the prior work on scan

defenses. The prior work is analyzed relative to Net-Chaff’s distinctive features. These are

the features that, collectively, make Net-Chaff unique. The prior work is presented in the

 14

following three subsections. The first subsection compares and contrasts each of Net-Chaff’s

distinctive features with similar prior-work. Next, whole systems that are similar to Net-

Chaff are presented. The third subsection describes scan defenses that work differently than

Net-Chaff.

Before analyzing the prior work, a summary of Net-Chaff’s distinctive features is

needed. Net-Chaff is used within a secured intranet. It’s primary purpose is to detect and

contain scans, and its primary objective is to contain scans before they can access vulnerable

computers. The Net-Chaff system detects scans by monitoring traffic to a large number of

unused addresses within the intranet. There are two ways that Net-Chaff slows down scans,

to prevent them from accessing vulnerable computers before containment: 1) a relatively

large number of unused addresses, and 2) the Net-Chaff system’s low-level impersonations.

Net-Chaff’s performance is analyzed using analytical models and a simulation, and both are

based on detailed calculations of scanners’ probe rates. Most of Net-Chaff’s individual

features exist in prior work. Net-Chaff combines and applies these features in a novel way.

There is a tremendous amount of prior work on scan defenses. It comes from a

number of sources, and they are summarized here. This summary describes broad categories

of the prior work. For each of the categories, an example of the prior work is cited. In the

sections that follow, specific instances of the prior work are described and cited. For scan

defenses, research and development has been carried out in academia (e.g., [JX04]), industry

(e.g., [PSN04]) and in the open-source community (e.g., [Ras01]). Scan-defense systems

have been developed, including prototypes (e.g., [WOK05]), open-source systems (e.g.,

[Ras01]), and products (e.g., [PSN04]). Scan defenses include prevention (e.g., [WSM04]),

detection (e.g., [Ras01]), containment (e.g. [PSN04]), and also intelligence collection and

analysis (e.g., [YBP04]). The three primary areas in which scan-defense work has been

performed are: 1) defenses specifically for scans (e.g., [Ras01]), 2) worm defenses (e.g.,

[WOK05]), and 3) intrusion detection systems (e.g. [BFP03]).

Most worms use active scanning to find new victims [Naz04]. These worms are

referred to as scanning worms. Hereafter, scanning worms will be referred to as simply

worms, unless differentiation of worm types is needed. The exponential growth of worms

 15

results in huge volumes of network scans. Many worm-defense systems detect worms via

their scanning (e.g., [PSN04]). However, worm detection involves more than scan detection,

since not all scanners are worms [GSX04]. Some worm-defense systems contain worms (e.g.,

[PSN04]). There are a number of intrusion detection systems that include scan detection (e.g.

[BFP03]). However, in general, intrusion detection systems are concerned with a wide

variety of attacks, and not just scans. Hereafter, the term scan defense will be used to refer to

any type of defense against scans, unless differentiation of the type of defense is needed.

2.2.2.1 Prior work related to Net-Chaff’s distinctive features

Each of Net-Chaff’s distinctive features are compared and contrasted with the related

prior work:

• Secure-intranet environment

Net-Chaff is designed for use within a secured intranet. Here, it is assumed that

unauthorized scans are infrequent and each warrants investigation. Also, the intranet

environment provides the centralized control needed to implement automated containment,

and to prevent source-address spoofing. Collectively, these attributes of secured intranets

provide significant opportunities for scan defenses. However, there appears to be little in-

depth research on these scan-defense opportunities. We are only aware of three systems that

focus on the opportunities for scan detection and containment for the secure intranet

environment. They are Arbor Network’s product Safe Quarantine [PSN04], and two LAN-

based products from Mirage Networks [MN06] and ForeScout [For04a, For04b]. These

systems are described in the next section.

Scan defense for the Internet is very different from scan defense for secure intranets.

This is due to the Internet’s much larger size, larger volumes of traffic and scans, and the

lack of centralized control. Research on the requirements for Internet worm-containment

show the problem is extremely difficult [MSV03]. These requirements are not applicable to

scan containment for Net-Chaff, as its environment is so different. Internet scan defenses

will be described later.

 16

• Monitoring unused addresses to detect scans

Net-Chaff detects scans by monitoring traffic to unused addresses. Typically, many

of a scan’s probes are to unused addresses. Such probes can be used to detect scans, as the

traffic is anomalous relative to benign traffic. There are two ways that network traffic can be

monitored, to detect scanners’ probes of unused addresses: 1) unused addresses can be

assigned to a monitoring system. Packets sent to those addresses are delivered to the monitor

via network routing. Net-Chaff uses this technique, as do several other systems which will

be described shortly. 2) Alternatively, a system can sniff network links to monitor traffic to

unused addresses. To filter-out benign traffic, the system must know which addresses are

unused. They can be specified a priori, or the system can deduce which addresses are

unused. Unused addresses can be identified by their lack of traffic (e.g., they do not send

ARP broadcasts) and also by failed connections (e.g., ICMP host unreachable messages).

There are several systems that monitor traffic to unused addresses by sniffing network links,

and they are described later.

Network intrusion detection systems (NIDSs) typically monitor network links, and

attempt to identify intrusions from amidst the legitimate traffic. There are a number of

significant difficulties and challenges with this approach [Naz04, RSM03, Spi02].

Monitoring an entire network can be very difficult, as many links may need to be monitored.

The large volume of legitimate traffic makes it difficult to accurately detect intrusions: 1)

often, intrusions make-up a very small portion of the traffic. 2) The large volumes of traffic

make it difficult to examine events over long time-scales. (Hackers use slow scans to exploit

this weakness in NIDSs.) 3) When multiple links are monitored, it is difficult to aggregate

this data and obtain a network-wide view of events. (Hackers use distributed scans to exploit

this weakness in NIDSs.) Aggregation is difficult due to the huge volumes of data, the need

for real-time detection, and also, the asymmetric routing of full-duplex connections (e.g.,

TCP) [RSM03].

Net-Chaff performs monitoring by assigning a very large number of unused addresses

to its monitoring systems (the Net-Chaff WAN and LAN servers). This technique provides

significant advantages over monitoring network links: 1) the volume of traffic is much

 17

smaller, 2) there is little or no legitimate traffic, and 3) network-wide surveillance is much

easier. Research in intrusion detection for high speed network links has found that real-time

monitoring becomes difficult, if not impossible, at very high speeds [LPV04]. As an

alternative, they recommend monitoring unused addresses because, there, the signal to noise

ratio is much higher.

There are other systems, in addition to Net-Chaff, that assign unused addresses to a

monitoring system, for the purpose of detecting scans. Spitzner discusses honeypot’s use of

unused addresses, for intrusion detection and for collecting intelligence on hackers [Spi02].

However, traditional honeypots typically use a small number of unused addresses. Also,

traditional honeypots typically require labor-intensive log reviews, which make them

unsuitable for a real-time IDS [DQG04]. Recently, researchers have developed a honeypot

system, called Honeystat, that uses many unused addresses for worm detection [DQG04].

As described earlier, Internet sinks monitor large numbers of unused Internet

addresses [HA05, PYB04, YBP04]. iSink is one such system, and it has the added feature of

providing deceptive replies to scanners’ probes of the unused addresses [YBP04]. iSink is

further described in the next section. There are other intrusion detection systems that

monitor a large number of unused addresses, and they include a distributed Internet IDS

[YBJ04] and two network worm-detection systems [JX04, WVG04].

As described earlier, traffic to unused addresses can also be monitored by sniffing

network links. There are scan and worm detection systems that attempt to learn, or deduce,

which addresses are unused [For04a, For04b, MN06, SJB04, PSN04]. honeyd is a honeypot

system that can learn unused addresses by monitoring a LAN for unanswered ARP requests

[Hon05]. honeyd has been adapted for use in detecting scans [YLM04]. It is further

described in the next section. There are other systems that monitor unused addresses, and the

addresses are specified by human operators [HC04, TK02].

• Slowing down scans

Net-Chaff uses a large number of unused addresses to slow down the rate at which

scans probe vulnerable computers. This helps reduce the average number of vulnerable

 18

computers a scan can access prior to containment. We are not aware of any other scan-

defense systems that use a large number of unused addresses for these purposes, especially

for IPv4. However, the idea of thwarting scans via a large address space is not novel; others

have observed that the large address space in IPv6 makes scanning very difficult [ZGT05].

To slow down scans, Net-Chaff also uses low-level impersonations at the unused

addresses. There are a number of scan-defense systems that use deception at unused

addresses. However, most of them use deception to elicit responses from scanners, in order

to better identify them [DQG04, JX04, Spi02, YBJ04, YBP04, YLM04]. Some scan-

defense systems use deceptive replies to confuse and misinform scans [Bec01, HC04,

XDM01]. We know of two deception techniques that are used to slow down scans. One is La

Brea, an it is described in a later section [LaB05]. The other deception technique is used by

firewalls.

We have observed that firewalls can slow-down scans by dropping disallowed

packets. Nmap’s source code reveals that it interprets dropped packets as an indicator of

congestion [Fyo04]. The dropped packets can induce nmap to reduce its scanning rate,

retransmit packets, and delay probe transmission. However, if host-firewalls drop scan

packets, then those hosts can potentially be discovered by an “inverse scan” [Ark01].

Normally, routers send ICMP host-unreachable messages in response to packets that are sent

to unused IP addresses. An inverse scan works by sending probes and looking for addresses

that generate no reply. Routers can defeat inverse scans by not sending ICMP host-

unreachable messages. Alternatively, hosts can defeat inverse scans by using a host firewall

that sends false ICMP host-unreachable messages [Rus02].

Net-Chaff uses low-level deceptions in order to simply its use of deception. These

deceptions work below the application layer, and they also include a null server, which

accepts data, and provides random replies or no reply. Deception that provides application-

layer content can be much more complex, difficult, and costly, e.g., deceptive web-servers.

Spitzner classifies honeypot systems according to the degree of user interaction that they

support, and the categories range from high interaction to low interaction [Spi02]. A low

interaction system provides simple application-layer impersonations, and typically, the

 19

impersonation can be easily detected by a hacker. We are not aware of other research that

focuses on the use of low-level deceptions, as a simple means for slowing-down scans.

• Scan containment

Net- chaff uses intranet routers to contain scans. Other systems that do this are Arbor

Network’s “Safe Quarantine” [PSN04] and CyberTrace [JX04]. PSAD is a firewall-based

system that detects scans, and contains them by blocking sources [Ras01]. There are also

systems that monitor intranet links for scans, and block scans over those links [HCL06,

WSP04]. There are two LAN-based products that detect worms, and they contain infected

hosts by sending them spoofed packets that disable communications, such as TCP RST and

ARP [For04a, For04b, MN06]. Similarly, La Brea replies to scanners with packets that can

potentially put them in a long wait-state [LaB05]. Systems have been proposed for worm

containment using host-based firewalls [TK02]. An alternative to containment is throttling,

which reduces scanning rates by dropping a portion of the packets sent [SJB04, Will02]

• Performance models

Another contribution of the Net-Chaff work is its performance analysis, which

includes both analytical models and simulations. There are systems that have features similar

to Net-Chaff’s. Among those systems, some have analytical models or simulations.

However, these analytical models and simulations do not appear to be applicable to Net-

Chaff [CGK03, GSX04, JX04, WKO05, WVG04, ZGT05]. The reason is that the modeled

systems work differently than Net-Chaff, or have different objectives.

There has been a substantial amount of research on modeling the growth of worms,

and the research includes analytical models and simulations [Naz04]. These models show

that worm growth is exponential and difficult to contain. They also show the need for

stopping scanning-worms before they can access a single vulnerable computer, which is Net-

Chaff’s objective.

2.2.2.2 Scan-defense systems similar to Net-Chaff

The prior section examined the prior work relative to Net-Chaff’s individual features.

This section describes scan-defense systems that, as a whole, are most similar to Net-Chaff.

 20

There are two systems for worm detection and containment that are intended for use

on enterprise networks. Arbor Network’s product Safe Quarantine detects worms by

monitoring network links for signs of worm scanning and propagation [PSN04].
4
 It

automatically contains worms by blocking them at intranet routers. An important

contribution of this product is its emphasis on not inadvertently blocking critical operations.

To avoid this, it learns normal network traffic, to know what traffic should not be blocked.

Net-Chaff differs from Safe Quarantine in that Safe Quarantine does not use unused

addresses to slow down scans, nor does it use deception to slow-down scans.

Another enterprise network solution for worm detection and containment is

CyberTrace, and it is an academic research project [JX04]. It uses unused addresses to detect

worms. It automatically contains worms by blocking them at intranet routers. An important

contribution of this system is its use of intranet routers to create an Internet sink, using

unused Internet address-spaces. When worms within the enterprise network scan the

Internet, they are likely to probe these address spaces. CyberTrace differs from Net-Chaff in

that it assumes a network that is largely open to the Internet, such as a campus network.

Also, CyberTrace focuses exclusively on worms, and not scanning in general. It does not use

unused addresses to slow down scans, nor does it use deception to slow-down scans.

Researchers at the University of Wisconsin have developed an Internet sink, called

iSink, and it also provides deceptive replies [YBP04]. The system is intended for studying

Internet background radiation, so its purpose and functionality are very different from Net-

Chaff’s. However, it makes two significant contributions that can be applied to Net-Chaff’s

implementation and deployment. The iSink system includes requirements analysis and

system designs for providing deceptive replies to large volumes of scan probes. iSink’s

techniques for generating its rudimentary deceptions could be used by Net-Chaff in

generating its low level impersonations. iSink was deployed on several lightly populated

class B networks. Its routing techniques, for unused addresses, could also be used for Net-

Chaff deployments.

4
 Currently, Arbor Networks does not sell this product. It appears the product may have been sold to ISS and

 21

La Brea is a system that attempts to suspend scanners, including scanning worms

[LaB05]. It does this by providing deceptive replies to probes sent to unused addresses on a

LAN. It detects these probes by monitoring the LAN for unanswered ARP requests. La Brea

attempts to suspend a scanner by sending it a TCP packet that is crafted to put the scanner in

a long wait state. It appears that La Brea could be easily countered by scanners that detect

this unusual TCP packet, or by scanners that work asynchronously [MSV03]. Researchers

have investigated La Brea’s potential use for thwarting Internet worms [CGK03]. Net-Chaff

and La Brea are clearly differ in the environments in which they are used, the ways they

monitor unused addresses, and the ways they use deception.

honeyd is another system that provides deceptive replies to connections sent to

unused addresses [Hon05, Pro04]. honeyd can detect traffic sent to unused addresses by

monitoring a LAN for unanswered ARP requests. Alternatively, unused addresses can be

assigned to honeyd. honeyd simulates honeypots at the unused IP addresses, and it has the

potential for a diverse set of interactive responses. One proposed use of honeyd is to thwart

scanning by 1) providing deceptive replies that confuse and deter scanners, and 2) coupling

honeyd with an IDS for scan detection [Pro04]. However, no further details are provided

about this system. Another proposed use of honeyd is to counter-attack scanning worms on

the Internet, and thereby stop them from spreading [Pro04]. Math models are developed for

the proposed system. They show that stopping an Internet worm would require hundreds of

thousands of honeypots. A significant problem with this system is that it requires knowledge

of a vulnerability that can be exploited to counter-attack the worm. An exploit for the

vulnerability is also required. This would be especially difficult for new worms.

Researchers have extended the honeyd system for use in scan detection [YLM04].

Their system is called HPDS. It works at the LAN level and impersonates computers at five

fixed addresses. Researchers working on the iSink system found that honeyd, “has significant

scalability constraints that make it inappropriate for monitoring large IP address ranges”

[YBP04]. Net-Chaff differs from honeyd and HPDS in the scale of unused addresses that it

incorporated within its product Proventia Network ADS.

 22

works with. A bigger difference with these honeyd-based systems is that they do not provide

containment of scans, in general, on an intranet.

There are two noteworthy LAN-based products that detect and contain worms. One

is from Mirage Networks [MN06] and the other from ForeScout [For04a, For04b]. These

systems sniff traffic on a LAN, and detect worms based on their traffic patterns, e.g., packets

sent to unused addresses. They implement containment by sending specially crafted packets

to infected hosts, such as TCP RST and spoofed ARP packets. An important contribution

from these systems is that they are designed to be installed on a LAN, with little or no

modification to the LAN. In contrast, Net-Chaff deployments can potentially require

significant changes to a network, e.g., converting to the 10.0.0.0 address space. We were

unable to find enough information on these products to adequately assess how they work, and

what their limitations are. A major difference between these products and Net-Chaff, is that

they only protect a LAN.

Researchers have experimented with systems that detect scans on a network link, and

send deceptive replies in response. CTCP is a system that works on an edge router that

proxies connections to the Internet [HC04]. Incoming connections to nonexistent or blocked

ports are redirected to a system that provides deceptive replies. The intention is to render

port scans useless by making it appear that all ports are open. There is a similar system,

called IEDP, that runs on a firewall [XDM01]. A major difference between these systems,

and Net-Chaff, is that they only work on network choke points that control network access.

2.2.2.3 Scan defenses different than Net-Chaff

There has been much research and development for scan-defenses, and the majority

of it is fundamentally different than Net-Chaff. This section describes the prior work on

scan-defenses that is dissimilar to Net-Chaff.

2.2.2.3.1 Monitoring operational network traffic

In the scan-detection work with which we are familiar, the majority of it involves

monitoring operational traffic. Operational traffic is the network traffic carried by normal

 23

network links, and it includes legitimate and benign traffic, as well as scans and attacks. Net-

Chaff is distinguished from the scan-detection work for operational traffic, as that work must

deal with the problem of identifying scan traffic that is mixed in with legitimate traffic. This

section provides an overview of the scan-detection work that involves monitoring operational

traffic. This overview shows the types of problems and solutions that have been addressed.

Scan detection has been investigated for different volumes and types of operational

traffic. Research related to high-bandwidth environments includes scan detection on

backbone routers [RSM03, SBB04, SYB06] and on high-speed networks (i.e., 10s of Gbps)

[GZC06]. Scan detection research has also focused on networks [HCL06, SHM02, WKO05]

and smaller local networks (e.g., LANs) [JPB04, SJB04, WSP04]. For network scan

detection, the use of mobile agents has been investigated [FA04]. Researchers have also

focused on scan detection within Internet traffic [QH04, ZGT05].

A large assortment of scan detection techniques have been researched for operational

traffic. Much of the scan-detection research introduces novel detection techniques that

attempt to solve the problem of finding scans within large volumes of legitimate data. An

overview of that research follows.

Commercial and open-source intrusion detection systems (IDSs) typically detect

scans by using a threshold-based detection mechanism [JPB04, RSM03, SHM02]. This

detection mechanism works by looking for X probes in a rolling window of Y seconds.

Examples of such systems will be given in section 2.2.2.3.2 (page 24). Net-Chaff uses a

simple threshold-based detection mechanism, and its use of other detection techniques is left

as a topic for future research.

Another commonly-used means for scan detection is scans’ large number of failed

connections. There are systems that detect scans by monitoring traffic for failed connections

[JPB04, RSM03, WSP04]. There are also systems that detect scanning worms in this manner

[CR05, SJB04, TK02]. There is a similar technique for detecting worm growth, and it works

by monitoring network traffic for changes in volume, much of which is due to worm

scanning [ZGT05].

 24

Researchers have investigated probabilistic techniques for scan detection. These

techniques have been used to rapidly detect scans [JPB04], to detect slow scans [SHM02],

and to achieve accurate detection in real-time [LK02]. Researchers have also investigated

scan detection techniques based on statistical analysis of network traffic [TRB06], and on the

use of fuzzy systems [DJK01].

There are other forms of anomalous traffic that are generated by scans, and that can

potentially be used to identify scans within operational traffic. Researchers have investigated

techniques for detecting scans based on anomalous sequences of connections [QH04],

asymmetries in traffic [HCL06], and anomalous numbers of half-open connections from a

source [SBB04]. Another technique detects scans by identifying connections for which no

host-name look-up was made via DNS [WKO05].

There are scanning techniques that use unusual or malformed packets for the purpose

of evading detection or for fingerprinting a host’s operating system [Ark01, Fyo97]. These

scan packets provide a signature that can be used to detect scans, and two systems that uses

this technique are Snort [BFP03] and psad [Ras01].

2.2.2.3.2 Scan detection systems

This section describes some of the most well-known scan detection systems that work

by monitoring operational traffic. Research in intrusion detection includes four systems

whose scan detection capabilities are often cited. The Network Security Monitor (NSM) was

the first NIDS, and it was also the first NIDS to detect scanning [SHM02]. It uses a

threshold-based detection mechanism. Another system is Bro. It uses a threshold-based

detection mechanism, and it also monitors failed connections [JPB04]. The Graph Based

Intrusion Detection System (GrlDS) detects scans by building graphs of activity where the

nodes represent hosts, and the edges represent traffic between hosts [SHM02]. The

EMERALD system constructs statistical profiles for subjects, and compares their short and

long-term behavior. One way it detects scans is a sudden increase in the volume of SYN

packets, for example, from a particular source IP-address [SHM02].

Levchenko, et al., list IDS products that detect scans, and the vendors include

 25

Checkpoint, Cisco, ForeScout, Juniper, NetScreen, and Network Associates [LPV04].

They indicate that these products monitor operational traffic. In addition, there are a number

of open-source tools that perform scan detection. Two of the most prominent are Snort

[BFP03] and psad [Ras01]. Both use threshold-based detection mechanisms, and they can

also detect several known scan-packet signatures. Snort is a commonly used NIDS and the

de facto standard in small stub networks [SYB06]. Scan detection is just one of its intrusion

detection functions. psad focuses primarily on scan detection, and it works with Linux’s

iptables rule-sets, e.g., as part of a Linux firewall [Ras01].

McClure, et al., make the observation that most IDSs are configured by default to

detect only very noisy or clumsy port scans [MSK03]. They state that an IDS must be

“highly sensitized” and “fine-tuned”, or stealthy scans will “go completely unnoticed”.

2.2.2.3.3 Other scan defenses

Net-Chaff’s scan-defenses primarily involve detection and containment. There are

several other types of scan defenses that have been researched and/or used in practice.

Research has been performed on visualizing scans, and the purpose of visualization includes

rapid comparison and identification of large numbers of network scans [MMB05]. There are

a number of techniques used to prevent scanning [XDM01]. Firewalls and systems that

perform network-address-translation (NAT) are well known techniques for blocking

scanners. Another well known technique is to configure servers so they listen on

unconventional ports. Routers can be configured to limit or drop certain ICMP messages that

scanners elicit to learn about the network [Ark01, XDM01]. Beck describes techniques to

evade scanners’ attempts to fingerprint host operating systems [Bec01]. Protocol scrubbing

involves filtering and modifying traffic to ensure there are no malformed or unusual packets

[WSM04]. Such packets can be used by scanners to elicit information or evade intrusion

detection systems.

2.2.3 Summary of scanning and scan defenses

There is a large volume of work on scanning and scan defenses. The work on

scanning reveals how hackers work, and what Net-Chaff must defend against. Net-Chaff is

 26

concerned with scanning within a protected intranet. The incidence of scanning on the

Internet is a topic of much past and current research. However, we are not aware of any in-

depth research on the incidence of scanning within a protected intranet.

Most of the prior work on scan defense is concerned with operational traffic. Net-

Chaff is differentiated from this work by its technique of monitoring traffic to large numbers

of unused addresses. Most of Net-Chaff’s distinctive features are found in prior work.

However, Net-Chaff combines and applies these features in a novel way. Of the systems that

are most similar to Net-Chaff, they all work differently and/or have different objectives. In

addition, there does not appear to be any in-depth prior work on two of Net-Chaff’s

distinctive features. They are Net-Chaff’s techniques for slowing down scans prior to

containing them, by using large numbers of unused addresses and by using deceptive replies.

This dissertation includes analytical models and a simulation for evaluating Net-Chaff’s

performance. There does not appear to be prior work on scan-defense that includes similar

analytical models or simulations.

2.3 Deception use in honeypots and other tools

Although appealing, deception appears to be used only sparingly for computer

security. The primary use of deception is with honeypots, and that work is summarized here.

A survey was made of deception use in other computer security tools, and that work is also

summarized. The use of deception for scan-defense systems was described in the prior

section. The dissertation’s Honeyfile system is a deception-based computer security tool,

and it does not appear to exist in the prior work.

An extensive survey of computer-security tools that use deception was conducted in

2003. The primary sources were two popular web-sites that disseminate security tools:

SecurityFocus
5
 and Packet Storm

6
. For each site, its tools database was searched using

deception-related terms such as trick, spoof, and hide. The search showed that aside from

5
 http://www.securityfocus.com

6
 http://www.packetstormsecurity.org

 27

honeypots, deception did not appear to be widely used for computer security. Over 75 tools

were found. Many of them are public-source prototypes that do not appear to be widely used

nor known. However, some of the tools were very useful as examples in the dissertation’s

deception models. The tools provide concrete illustrations for the abstract models.

Honeypots are computer systems that are designed to be probed, attacked or

compromised by hackers [Spi02]. Typically, a honeypot contains servers and content that

are attractive to hackers. Also, the honeypot is typically placed on a network where hackers

will likely encounter it. Currently, the primary uses of honeypots are collecting intelligence

about hackers and detecting attacks. A honeynet is a network of honeypots. In the honeypot

literature, the primary topics include: design and construction [CDF04, Spi02], specific

honeypot devices [Cha04b, Hon05, LaB05], monitoring hackers [Bal04, HP04], deployment

[Góm04, Hoe04], incident investigations [JLG04, OL04, RBB04], legalities [Cha04a,

MW03, Row05a], hacker intelligence [Chu03, Fis04, HP04], hacker countermeasures to

honeypots [Cor04, DHK04, Kra04]. To date, there has been very little discussion of

deceptive data on honeypots. It appears that honeypots are typically deployed with stock

operating systems and servers, but with no user or application data. Aside from this

dissertation, there has been little discussion of general deception processes and principles for

honeypot operations.

2.4 Summary

This chapter provided a summary of the literature surveys and the surveys of prior

work that were conducted for this research. The initial finding is that there has been very

little work done on deception processes for computer security. The extensive military and

intelligence deception-literature was described. It provides a very useful starting point for

developing the two novel process-models. The use of deception in computer-security tools,

including honeypots, was also discussed. The Honeyfiles system is a novel contribution of

this dissertation, and it is discussed further in subsequent chapters. There has been a

tremendous amount of research and development in scanning and scan defenses. An

extensive review of that work was given, especially as it relates to Net-Chaff. Most of Net-

Chaff’s distinctive features are found in prior work. However, Net-Chaff combines and

 28

applies these features in a novel way. This dissertation includes analytical models and a

simulation for evaluating Net-Chaff’s performance. There does not appear to be prior work

on scan-defense that includes similar analytical models or simulations.

 29

3 Deception framework

This chapter introduces the deception framework, which is comprised of the

deception-operation process model and the hiding model.

3.1 Deception operation process

This section explains how deception can be used to advantage in computer security,

including incident response, intelligence, detection, and prevention. It describes the process

followed in deception operations, and it describes principles and techniques for developing

and conducting deception operations. This work focuses on deception principles that are of

enduring use, and independent of current technologies. For instance, honeypots are currently

one of the most widely used deceptions. Honeypots are employed in the discussion to

illustrate principles, but honeypots are not the primary focus.

Deception is an integral part of human nature and experience. However, few people

use deception in the calculated manner needed for computer security. As the military

deception-literature reveals, effectively deceiving an adversary is a job skill [JDD96, Mur80,

USA88]. The principles of military deception are well documented in the military deception-

literature, and they are based on millennia of experience and thought. Herein, we adapt

principles of military deception to computer security deception.

3.1.1 An overview of deception operations

In this section, basic deception concepts and terminology are presented, followed by a

description of the deception-operation process.

3.1.1.1 Basic concepts and terminology

Computer security deception is defined as being those actions taken to deliberately

mislead attackers (i.e., hackers) and to thereby cause them to take (or not take) specific

actions that aid computer security.
7
 Deception aims to mislead the hacker into a predictable

7
 This definition is adapted from the U.S. DoD definition of military deception [JDD96].

 30

course of action or inaction that can be exploited [Dew89]. Tricking the hacker, and making

him think a certain way, is important only as a step toward getting him to make the decision

that will result in the desired action [JDD96]. Thoughts without action are of little computer

security value.

The scope of this section is deception for computer security defense. It focuses on the

tactical use of deception for a computer network, including its assets. The key deception

terms (deception planner, deception operation, target, intelligence, and ruse) are defined in

Chapter 1 and in the glossary. An additional term employed in this section is CND (computer

network defense).

3.1.1.2 The deception-operation process

The deception-operation process involves complex adversarial relationships and

complex engineering systems. Although the overall process can be complex, there is a basic

deception-process that is followed in almost all operations. This basic deception-process is

shown in Figure 3.1.1.2-1, and it is described below.
8
 In this section, references to process

steps in the figure are bolded. Similarly, references to sub-steps are italicized. Due to the

complexity of deception operations, this basic process is a simplified conceptual model, and

it focuses on the components found in successful deception operations. The model is not

meant to provide a complete description of all deception operations’ elements and

interactions.

8
 This basic deception-process was adapted from a draft written by our colleague Dr. Bowyer Bell.

 31

Deception-Operation Development

Planning
Goals and objectives:

 · deception-opportunity analysis

 · deception objective

Target identification & analysis

Operations requirements
Operations management:

 · risk analysis

 · operations security

Build the Deception

Deception story
Feedback

Termination plan
Event-schedule

Prepare to
Engage the Target

Exploit for target actions
Response for problems

Coordination with network ops

Continuation
Decision

evaluate efficacy and
new conditions

modify deception operation continue deception-operation as is

Termination

Terminate Deception Operation

Control exposure
Clean-up

Target Engaged

Deployment

Deploy Deception-Story

story presented in target's observation-arenas

Target Deceived
story received

story accepted
intended-action taken

Exploit Target's Response
feedback collected and analyzed

target's-action exploited

Feedback

failure path failure path

Figure 3.1.1.2-1 : The basic deception process

 32

• Deception-Operation Development

The deception operation begins with step 1: Deception-Operation Development

(top-most box in figure). The deception operation’s plan, deception, and means for engaging

the target are developed, roughly in that order. Planning is an iterative process that is

conducted throughout the deception operation. Its first step is recognition of the need or

opportunity to deceive a target. What must be done in deception planning, and often is not, is

to determine the result desired from the deception. Mere acceptance of the deception may not

be advantageous, and it may in fact prove costly. For example, a clever honeypot could

attract an unwanted horde of script kiddies, and hiding a host’s log files may make the hacker

uncertain of the evidence he’s left, prompting him to erase the entire file system, just to be

safe (e.g., “rm –rf /”). Thus deception is a means, not an end. The objective of a deception

operation is: 1) to induce the target to take some specific action—perhaps to do nothing, and

2) to exploit that action, or otherwise use it to advantage.

Deception operations are ultimately against individual hackers, so planning includes

identification of the deception targets, and analysis of their vulnerabilities to deception.

Planning also involves risk analysis and operations security to ensure the deception is not

revealed to the target.

To induce the target to take the intended action, a deception story is designed (step 1,

sub-step 2 in figure), and it is implemented using various ruses. The deception story is

presented to the target in his observation arenas. Typically, the most effective observation

arenas are the target’s intelligence sources. One of the primary ruses used in computer

security are honeypots, and they have proven useful for detecting attacks and for collecting

intelligence about hackers [Spi02]. A honeypot can contain servers and content that are

attractive to hackers, and it can be placed where hackers’ network scans (a hacker

intelligence source) are likely to encounter it.

• Deployment

The deception operation is deployed (step 2, second rounded box in figure) by

presenting the deception story to the target in his observation arenas. This is a key transition

 33

in the deception process, as the deception operation is now out of the planner’s control until

the return of feedback that suggests an appropriate response. The deception story is

maintained until it is received by the target. This can occur almost immediately, as with

honeypots on a network’s so-called demilitarized zone (DMZ). Alternatively, the deception

story might be maintained for months or years before being received, as might occur with an

intranet honeypot used for detecting insider hacking.

• Target Engaged

The target is engaged (step 3, third rounded box in figure) once he receives the

deception story. The target is successfully deceived when he receives the deception story,

accepts it, and, as a consequence, takes the intended action.

Feedback channels provide information about the target’s reception of the deception

story and his response to it. The ultimate goal of deception operations is exploiting the

target’s response.
9
 This occurs after the feedback is collected and analyzed, and it is known

that the target has taken the intended action. For honeypots, feedback channels are an

essential feature. For example, Symantec’s ManTrap honeypot can record much of a hacker’s

activity, including network traffic, process activity, and keystrokes [Spi02]. ManTrap can

also detect hacker activity and send alerts.

The deception story exerts control on the target, manipulating him at a distance. Such

manipulation may be intended to have a very short existence. For instance, BackOfficer

Friendly (BOF) is a honeypot that can impersonate unauthorized remote-access servers, like

BO2K [Spi02]. Servers such as BO2K are installed by hackers via Trojan horses. BOF’s

impersonation is superficial and its ruse can quickly be discovered by the hacker, but not

before he is detected. Other deceptions may be intended to last indefinitely. For example, a

fake VPN interface can be used to draw attention away from a network’s real VPN interface.

The deception is intended to last indefinitely.

9
 Thanks to Fred Feer for showing us how the exploit is the deception operation’s ultimate goal. In the military

deception literature that we have read, the exploit’s central role is under-emphasized.

 34

• Continuation Decision and Termination

A continuation decision (step 4, diamond in figure) is made for the deception

operation, based on its efficacy and the current situation. The process can be terminated,

continued as-is, or modified, in which case the process returns to deception-operation

development. Termination (step 5, last box in figure), occurs when the deception story has

achieved its purpose and is no longer needed, or when the target discovers the ruse. The

target often discovers the ruse when his response to it is exploited. For example, hardware

keystroke-loggers are dongles that attach to the keyboard cable. Their effectiveness depends

on stealth: they are located behind the computer, appear to be a normal part of the cable, and

few people know about them. When a hacker is confronted with evidence from a keystroke

logger, the ruse will probably become apparent. Thus, it can no longer be used against him or

his accomplices. Terminating the deception involves controlling exposure of the ruse, so it

might be used again, as well as cleaning-up its affects upon computer systems and personnel.

• Complexities in the deception process

Real-world deception operations tend to be more complex than the basic deception-

process shown in Figure 3.1.1.2-1. Two of the major sources of complexity are: 1) multiple

deception stories and 2) operational failures. Such complexity can be understood in terms of

the basic deception-process.

Deception operations may involve multiple deception stories, and there can be

multiple actions intended for the target to take. The stories and actions may be inter-related,

requiring them to be conducted in parallel or serially. Furthermore, there can be multiple

targets. For such deception operations, the basic process portrayed in Figure 3.1.1.2-1 is

used, but its components may occur more than once: multiple deception stories are

developed; there are multiple deployments; and there are multiple target-engagements.

There are a plethora of problems that can cause a deception operation to fail. For

example, the deception will fail if: the deception story isn’t received; the target discovers the

ruse; the story is not interpreted as intended; or the intended action isn’t taken. Such

problems can be modeled as departures from a successful deception operation. Two types of

 35

failure are shown by the dashed lines in Figure 3.1.1.2-1. If the target does not receive the

deception operation, then the leftmost failure path is taken. If the target receives the

deception, but he is not deceived, or the exploit fails, then the rightmost failure path is taken.

The remainder of this section focuses on deception-operation planning and on

building the deception story.

3.1.2 Deception planning

“A prince or general can best demonstrate his genius by managing a campaign exactly to

suit his objectives and his resources, doing neither too much nor too little.” [Cla32]

–– Carl von Clausewitz

Deception-operation planning provides direction for the operation by developing its

goals, objectives and requirements.
10

 In conjunction, the targets are analyzed to learn their

vulnerabilities to deception.

3.1.2.1 Deception opportunity analysis

Deception opportunity analysis identifies ways deception can be used to support

computer network defense (CND). For the deception operation to be effective, it should be

fully integrated with the overall CND effort. The deception operation must be compatible

with, and coordinated with, the network’s security and production operations. Deception is

not an end in itself, and it should not be used simply because there are clever ways to trick

hackers.

3.1.2.2 The deception objective

“...it became a creed [among deception planners] to ask a General, ‘What do you want the

enemy to do,’ and never, ‘What do you want him to think?’” [Mur80]

–– Dudley Clark, WWII deception planner

The deception objective is the desired result of the deception operation; it consists of:

1) the intended target action, and

10

 This planning process is adapted from the U.S. Joint Forces’ deception process [JDD96].

 36

2) the deception exploit.
11

The target-action is a statement of what the hacker is to do (or not do) at some time

and location. It is always stated in terms of specific actions, such as, “cause the targets’

attacks against our server to be performed, instead, against the honeypot server”. A statement

such as “have the hacker think that the honeypot server is the real server” is not a target-

action, rather, it is a desired perception (described in section 3.1.3). Having the hacker think a

certain way is important only as a step toward getting him to make the decision that will

result in the intended action. Thoughts without action are of little security value.

The deception exploit is a statement of how the target-action will benefit CND, e.g.,

through attack detection, prevention, or response. The deception exploit may include actions

to be taken against the target, following the target-action. For instance, the prior example’s

deception exploit would be, “for successful attacks against the honeypot, the honeypot will

record the attack and send an alert.” Some deception exploits do not require taking action

against the target, e.g., when using a ruse to confound operating system (OS) fingerprinting,

the deception exploit is thwarting attacks that depend on accurate OS fingerprinting.

The deception operation’s ultimate goal is successful completion of the deception

exploit. The deception-story and ruses are just means for inducing the target-action. After the

story is deployed, feedback is analyzed to determine when the target-action is taken. The

deception exploit can go into effect after the action is taken.

3.1.2.3 Target identification and analysis

“It was so important to the deception work to be able to put oneself completely in the mind of

the enemy, to think as they would think on their information, and decide what they would

do.” [Mon78]

–– WWII deception planner

Deception attacks the target’s perception and his thinking process, so effective

deception requires intelligence on who the target is, how he works, and how he thinks.

11

 The deception objective is adapted from the U.S. Joint Forces deception manual [JDD96]. However, its

deception objective only consists of the target action. We include the deception exploit with the deception-

objective, as it is the deception-operation’s ultimate objective.

 37

Computer-security systems face a wide variety of threats. Howard classifies hackers

primarily by their intentions: professional criminals, corporate raiders, hackers, vandals,

terrorists, and spies [How98]. Hackers also vary widely in their capabilities and physical

locations. It is possible to create deceptions that are effective against a wide variety of

hackers. For example, Cohen, et al., have conducted experiments in which a particular

deception worked against both undergraduate neophyte-hackers and seasoned penetration-

testers [CMS01].
12

 However, for deception operations, if a specific type of target can be

identified, then its unique vulnerabilities to deception can be exploited. For example, script-

kiddies’ have a youthful naiveté that is vulnerable to deception.

An understanding of how hackers work reveals their vulnerabilities to deception and

how those vulnerabilities can be exploited. Fortunately, much is understood about how

hackers work, as the complexity of hacking compels hackers to use publicly available tools

and information. There are many books on hacking techniques [MP01, MSK03], and the

Honeynet Project has reported the findings from their extensive surveillance of hackers

[HP04].

Outsider hackers (non-insiders) are almost always naive about the networks they

hack. A hacker’s experience and skills are often asymmetric with the experience and skills

needed for the network he is hacking. For example, hackers typically have never legitimately

worked on a network, or in an organization, like the ones they are hacking. Even if a hacker

has a high degree of technical skill, he may be naive about the network’s topology and

operations, as well as the network personnel’s language and culture.

An understanding of how hackers think also reveals vulnerabilities to deception and

how those vulnerabilities can be exploited. The key elements of the hacker’s thinking are his:

1) intentions, 2) perceptions, 3) decision-making process, and 4) his psychological

vulnerabilities to deception. The hacker’s particular psychological vulnerabilities to

deception can also be used to advantage. For example, the hacker Matt Singer was reportedly

12

 The experiments tested the efficacy of a device that apparently creates many imposter computers on a

network. However, the paper does not appear to describe the device in detail.

 38

obsessive, compulsive and undisciplined in his hacking [FM97]. Such shortcomings

significantly limit a hacker’s ability to carefully and critically examine ruses. A number of

books provide insights into how hackers think: chronicles of prolific hackers [FM97, Sto89],

the aforementioned findings from the Honeynet Project’s surveillance [HP04], and a

sociologist’s study of hacker culture [Tho02].

3.1.2.4 The target’s intelligence sources

“Provided the enemy has an efficient intelligence service, provided he is capable of reacting

to what he sees, or thinks he sees, he can apparently be taken in again and again.” [Bar52]

–– WWII deception planner

“I wanted to watch the cracker’s keystrokes. . . The best solution was to lure him to a

sacrificial machine and tap the connection. . . [We] did construct such a machine, [but]

never managed to lure anyone interesting to it.” [Che92]
13

–– Bill Cheswick

When implementing the deception story, the planner’s goal is that the story be

received by the deception target (i.e., hacker), believed, and interpreted as intended. Such

manipulation of an adversary can be very difficult and problematic. Fortunately, the target

provides an opportunity the planner can exploit to achieve his goal: in the course of hacking,

the target eagerly seeks particular information, and this presents an opportunity for using the

target’s intelligence sources to communicate the deception story. Simply put, an intelligence

source is something that is used by the target to learn about the network. The U.S. DoD

defines an intelligence source as “the means or system that can be used to observe and

record information relating to the condition, situation, or activities of a targeted location,

organization, or individual. An intelligence source can be people, documents, equipment, or

technical sensors” [JDD01].

Hackers’ intelligence sources take a variety of forms, and two of the primary sources

are network-scanners and network sniffers. A web-site can be either an intelligence source,

or the object of an attack, depending upon how the target uses it. Some of the most useful

13

 emphasis added

 39

intelligence sources are network-administration tools such as traceroute and ping. Also, any

network client can be used as an intelligence source, e.g., telnet, FTP, and web clients. In

social engineering, insiders are used as unwitting intelligence sources. A description of

hackers’ intelligence sources can be found in books on hacking techniques. For example,

McClure, et al. list four types of hacker intelligence-sources: 1) footprinting, which is the use

of publicly available information to learn about an organization and its network, 2) scanning

to learn about the network topology and its devices, 3) enumeration, which is scanning for

particular computer-security vulnerabilities, and 4) pilfering, which involves searching

systems for passwords and exploitable trust relationships [MSK03].

Designing the deception story requires an understanding of the target’s intelligence

sources and observation arenas. The implemented parts of the deception story must be

observable by the target’s intelligence sources, e.g., a port scan. Otherwise, the target cannot

receive the story. Also, there are several types of vulnerabilities in the target’s intelligence

process that are helpful to know and exploit: 1) the single sources of information that he may

rely upon, as deception is easier when the ruse will not be cross-validated (e.g., remote

hackers often just rely upon network data), 2) the information he uses that is superficial and

easily misrepresented, as with a ping scan, 3) the investigations he performs when he is naive

and thus easily duped, as during his initial network reconnaissance, and 4) the intelligence

processing of the hackers’ automated agents, such as worms’ network scans, since their

simplicity and determinism may be easily duped.

3.1.3 The deception story

To induce the target to take the intended action, a deception story is designed, and it

is implemented using various ruses. The deception operation’s objective is to induce a

specific target-action that benefits CND. The desired perception is what the target must

believe in order for it to take the intended action [JDD96]. The deception story is an outline

of how the computer system will be portrayed so as to cause the target to adopt the desired

perception, and take the intended action. This section presents principles and techniques for

developing the deception story.

 40

Often, determining the desired perception can be difficult, as it requires an

understanding of how the target works and thinks. Generally, it is much easier to reinforce an

existing belief than to establish a new one [Heu81]. For example, if a deception story

involves the portrayal of a high-volume web site, then computer-savvy hackers that break

into the site will reasonably expect to see multiple web servers, load balancing, and a multi-

tiered architecture. A technique for ensuring the target action is taken is to make the target

believe the target-action is in his best interest. Ideally, the target will perceive the intended

action as compelling, and alternative actions as untenable.

Figure 3.1.3-1 : The intellectual-property (IP) deception operation

The principles presented in this section are illustrated by an example deception

operation, and it is descriptively named the intellectual-property (IP) deception operation.

The purpose of the operation is to protect a company’s intellectual-property database. The IP

database is a collection of trade secrets, recorded in various formats such as MS Word and

AutoCAD. The database is maintained by the company’s IP department, and the

department’s director and his assistant have exclusive access to it. The IP department’s

assistant's workstation,
with honeypot ftp-server

director's
workstation

IP-department's
private LAN

IP database

intranet
LAN

company's
intranet

IP-department's
web-site

 41

intranet web-site describes the department, and the procedure for employees to submit trade

secrets. Submissions are made by copying files to a shared folder on the assistant’s

workstation, and the assistant stores the files on the IP database. The database is kept on a

single computer, and the computer is on a private LAN that can only be accessed by the

director and his assistant. This example is illustrated in Figure 3.1.3-1.

The target of the IP deception operation is a hacker who attempts to gain

unauthorized access to the IP database. The intended target-action is one that reveals the

target’s presence and intent, but does not compromise computer security. The deception

exploit is attack detection and the recording of forensic evidence. The desired perception is

an exploitable vulnerability that provides access to the IP database. The deception story is a

vulnerable FTP server on the assistant’s workstation. The FTP server will appear to be a

particular make and version that has a buffer-overflow vulnerability.

3.1.3.1 Essential design-criteria

For a deception story, its essential design-criteria [DH82b, JDD96, USA78] are that it

be:

Plausible: the story must be plausible from the target’s perspective. Consequently, it

should appear appropriate from both an engineering and operations perspective. Also, it

must appear to be something the defender is capable of doing. The story should be consistent

with real systems and operations, as well as being internally consistent.

Receivable: The story must be something the target’s intelligence is capable of

receiving and interpreting as intended.

Verifiable: If the target will verify the story through multiple intelligence sources,

then the story should be portrayed through more than one source. For example, to avoid

honeypot web sites, a target can verify web sites he discovers by searching for links to them

from real web-sites.

Efficacious: For the story to be efficacious, it must be received, and it must

 42

effectively induce the desired perception and target-action.

Implementable: The story must be something the deception planner is capable of

implementing.

The IP deception-operation example illustrates the above design-criteria: the

deception operation’s story is plausible to insiders because the IP assistant is capable of

installing an insecure FTP server. File transfers are consistent with the assistant’s job

responsibilities, as described on the IP web-site. Also, the FTP server’s vulnerability is

consistent with other security problems on the intranet. The vulnerable FTP server is visible

to a port scan, which is the target’s expected means of receiving intelligence. The IP web-

site’s description of the assistant’s file-transfer responsibilities helps to verify the story. The

story is potentially efficacious as the FTP server’s vulnerability is the target’s only known

means for accessing the IP database. The story can be implemented using a COTS

(commercial off-the-shelf software) honeypot, such as Specter [Spi02].

3.1.3.2 Design principles

For a deception story, some of the key design principles are:

Inducing the target-action. The target-action is easier to induce if it something the

target is predisposed to doing, such as: 1) something he is already planning to do, 2)

something he normally does, or 3) something he wants to do. In the IP deception operation,

the target is hackers who are seeking to steal intellectual property. It is expected that the

target will first locate and study the IP department’s web-site. From it he will learn that the

director and his assistant maintain a repository of intellectual property, and that their

computers are promising pathways to the repository. It is anticipated that the hacker will scan

these computers for vulnerabilities, and then attempt to exploit a vulnerability that provides

easy and stealthy root access. Both of the computers are kept very secure by their users and

by the IT department. The honeypot FTP server is expected to be the only vulnerability that

the target encounters, making it compelling to attack.

Making the story believable. In general, it is easiest to persuade the target to believe

 43

something he already expects. Also, it can be easy to deceptively portray things that are

normally hidden from the target. Often, the target only expects to find limited information

about something that is hidden, in which case that is all that needs to be portrayed. In the IP

deception operation, the IP database is one of the company’s major assets. Hackers will

expect the database to be highly secure and difficult to access. The deception story would not

be very believable if it portrayed a fake IP database that could be accessed and compromised

in a trivial way, e.g., via a misconfigured readable file-share.

Preventing the target from uncovering the deceptions. The deception story’s

falsehood should be kept to a minimum. The truth is much stronger than a lie, and it can be

difficult to maintain a lie over time. Also, minimizing falsehood makes the deception story

easier to implement. Some techniques for minimizing falsehood are: 1) make the story

simple, 2) weave the story into the truth, 3) provide no more detail than is necessary, and 4)

impersonate things that are normally concealed from the target, as he will only expect to see

bits and pieces of information about them, and only those pieces of information need to be

portrayed. The IP deception operation illustrates these points: its deception story is a small

extension to real systems and operations (items 1 and 2, above). The story is implicitly

verified by information on the real IP web-site, and by the real workstation that runs the FTP

honeypot (item 2, above). Using a different example for items 3 and 4: when impersonating a

subnet that is protected by a stealthy firewall, only a few expected signatures may have to be

shown.

Another way to prevent the deception story from being uncovered is to minimize the

target’s scrutiny of the deceptions. Three techniques for doing this are: 1) the deceptions can

be communicated to the target via his less scrutinizing intelligence capabilities. If the target

cannot examine the deception closely, he will be less likely to detect it. 2) Deceptions can be

communicated to the target when he has little time to scrutinize them, and 3) the deceptions

can portray things of which the target has little understanding. A good example of when

hackers have little time to observe is during extensive port scanning. When many ports are to

be scanned, each scan must be quick, and thus superficial. Such scans are easy to deceive,

and the deception is fairly reliable. For example, ping scans can be easily and reliably

 44

deceived by fake echo-reply packets.

Ensuring the target receives the story. In the course of hacking, the target eagerly

seeks particular information; this presents an opportunity for using the target’s intelligence

sources to communicate the deception story to him. In the IP deception operation, the IP

web-site is one of the target’s intelligence sources. Also, the deception story included a

vulnerable FTP server on the IP workstation because it is something the target can see, and is

likely to see. Designing the deception story requires an understanding of the target’s

intelligence sources and observation arenas.

Revealing the story. A technique for revealing the deception story is to provide the

story in bits and pieces and then let the target piece the story together by inference [Dew89,

USM89]. The technique is consistent with the target’s intelligence activities, as they

normally acquire information in bits and pieces. A weakness of the technique is the risk of

misinterpretation, as the small amounts of information might be reasonably interpreted in a

variety of different ways.

Implementing the story. Usually, only parts of the deception story will need to be

implemented. Some of the story will be tied to the truth and portrayed by real systems and

operations. Some of the story can be notional, implied by the parts of the story that are real

and that are implemented.

To determine what parts of the story to implement, one must understand how the

target receives the deception story, and what he expects to see [JDD96]. For the IP deception

operation, the target’s intelligence collection is expected to begin with the IP web-site. It will

be followed by a port-scan of the two IP workstations. The target will then investigate the

listening ports for vulnerable servers. Most likely, the target will not expect to be deceived

nor detected, so he will trust what he sees, and he will act boldly and quickly.

The target’s intelligence and investigative capabilities determine how he receives the

deception story. The deception planner must determine the things the target would expect to

see if the deception story was true. For the IP deception operation, the target will expect the

 45

IP department’s workstations to be secure, but he will look for accidental vulnerabilities. The

target will use a port-scanner to find network servers on those workstations. He’ll examine

the servers for exploitable vulnerabilities, such as the buffer-overflow vulnerability on the

FTP server WUFtpd Version 2.5.0 [CER99]. The target will expect an FTP server to present

its login interface. A buffer-overflow attack normally crashes a server, or it provides access

to a root shell. The target will not expect the IP database itself to be easily accessible on the

intranet, due to its value and security.

Having determined how the target discovers the deception story, and what he expects

to see, the planner can then determine the parts of the story to implement. For the IP

deception operation, the real IP web-site and workstations will portray themselves. An FTP

honeypot will impersonate a vulnerable FTP server, as the target expects. However, the

honeypot does not need to simulate, nor provide, root-shell access. After several failed

attacks, the target will simply give up, and attribute the failures to system idiosyncrasies.

Nothing needs to be portrayed regarding the IP LAN. The target’s knowledge of it is

speculative, and he will expect it to be hidden and inaccessible.

Realism. For each part of the deception story that is implemented, the deception

planner will need to determine its degree of realism. The realism needed is a function of: 1)

the target’s intelligence capabilities, and 2) the time the target has available to analyze the

situation and take appropriate actions [FN95]. Often, minimal realism is needed for

deceptions that the target has little time to observe and analyze [FN95]. For example, hackers

have little time to observe during extensive port scanning. When many ports are to be

scanned, each probe must be quick, and thus superficial. Such scans are easy to deceive, and

the deception is fairly reliable. In general, it is best to design the deception story so that the

amount of realism needed is kept to a minimum.

3.1.4 Summary of the deception operations model

The deception process’ basic components are illustrated in Figure 3.1.1.2-1 (page 31).

In deception planning, we have observed that it is very easy for the deception operation’s

trickery to become enthralling and captivating, and cause the planner to lose sight of the real

 46

objective. The deception objective is the desired result of the deception operation; it consists

of: 1) the intended target action, and 2) the deception exploit. The deception operation’s

ultimate goal is successful completion of the deception exploit. The deception operation’s

trickery is just a means for inducing the target-action. In particular, the desired perception is

what the target must believe in order for it to take the intended action. The deception story is

an outline of how the computer system will be portrayed so as to cause the target to adopt the

desired perception, and take the intended action.

For the deception operation to be successful, the deception story must be: received by

the target, believed, interpreted as intended, and the story must induce the target action. Such

manipulation of an adversary can be difficult and problematic. Fortunately, the target

provides an opportunity that the deception planner can exploit: in the course of hacking, the

target eagerly seeks particular information, and his intelligence processes can be used to

communicate the deception story to him. In addition, feedback channels are needed to

provide information about the target’s reception of the deception story, and his response to it.

 47

3.2 Hiding model

Hiding things is common practice in computer security. Routinely, systems and files

are hidden using firewalls and access controls, and data are encrypted. These common forms

of hiding typically work by denying information to potential hackers. Another way to hide

things is by using deception. Deception is a promising means for computer security, as seen

with honeypots [Spi02]. This section examines the use of deception as a means of hiding

things from hackers.
14

Deceptive hiding can be used in a wide variety of computer security applications. One

such application involves hiding information about a network’s topology, vulnerabilities, and

assets from hacker reconnaissance (e.g., scanning). The honeypot “honeyd,” for example,

intercepts connections to unused network addresses and impersonates computers at those

addresses [Spi02]. Its ruse makes it difficult for hackers to find real computers and to scan

the network without being detected. Deception can also be used to hide computer-security

devices, including firewalls, intrusion detection systems, keystroke loggers and honeypots.

For example, a firewall can send fake ICMP “host unreachable” messages in response to

disallowed packets, making it appear that the firewall, and computers behind it, are not on the

network.

We define computer security deception as the actions taken to deliberately mislead

hackers and to thereby cause them to take (or not take) specific actions that aid computer

security [JDD96]. Often, for deceptive hiding, the objective is to cause the hacker to not take

a particular action, such as accessing a server.

Furthermore, computer security deception aims to mislead a hacker into a predictable

course of action or inaction that can be exploited or otherwise used to advantage [Dew89]. In

general, one wants to avoid actions that cause the hacker to act dangerously or unpredictably.

For example, suppose a system administrator hides network logs to prevent hackers from

14

 This section appears in a copyrighted journal paper [YDF06]. It is reprinted here by permission. There are

some minor differences between this section and that paper.

 48

erasing their tracks. If a hacker does not find expected logs, he may erase the entire hard

drive, just to be safe. An important aspect of deception planning, therefore, is anticipating

such unintended consequences and taking actions to mitigate their effect.

We will refer to the thing being hidden as the hidden item. It includes anything that

needs to be hidden for computer security, such as assets, vulnerabilities, data, processes, and

even network agents, including people. Items are hidden from an agent, human or computer.

The agent whom the item is hidden from will be referred to as the target. In the context of

computer security, the target is a hacker or his automated agent (e.g., a worm). For deception

operations, the adversary who is being deceived is referred to as the deception target. For

deceptive hiding, the target of hiding is also the deception target.

This section explains how deceptive hiding works in terms of how it misleads, or

tricks, a particular target (i.e., hacker). However, the deception planner’s ultimate purpose is

not to mislead the target, but to improve computer security in some specific way. In the

experience of the author, deception’s trickery can be alluring and intriguing, making it is easy

to lose sight of the deception’s ultimate purpose.

This work describes deceptive hiding through a process model. The model’s purpose

is to provide a framework for understanding, comparing, and developing methods of

deceptive hiding. Although the model is based on general principles and techniques that are

domain-independent, the focus is on the model’s application to computer security. The goal

is to help the security professional evaluate, compare, configure, and use existing deceptive

hiding techniques (e.g., honeyd); and to help explore possibilities when creating new

techniques.

The model characterizes methods of deceptive hiding in terms of how they defeat the

underlying processes that a target uses to discover the hidden item. This process is

decomposed into three means of discovery: direct observation (sensing and recognizing),

investigation (evidence collection and hypothesis formation), and learning from other people

or agents. Although the focus is on deceptive hiding, many of the concepts are also relevant

to non-deceptive hiding.

 49

The next section introduces the process of deceptive hiding. Subsequent sections

describe the three means of discovery and how they can be defeated; a final section

concludes.

3.2.1 The process of deceptive hiding

Bell and Whaley categorize deceptions as hiding and showing [BW82, Wha82].

Deceptive hiding conceals or obscures a thing’s existence or its attributes in a way that

intentionally misleads the target. It is distinguished from denial, which may also involve

hiding, but without the intent to mislead. Denial simply withholds information from the

target. Encryption, which overtly conceals a message but not its existence, is an example.

Steganography, on the other hand, which aims to hide the existence of a communication, is

deceptive, as it uses a misleading data carrier (e.g., text is hidden in the low-order bits of an

image file in such manner that the text is not visible to the naked eye).

Deceptive showing makes something that doesn't exist appear as if it does by

portraying one or more of its attributes. For example, after several unsuccessful logins, a

computer can continue to prompt for passwords, but ignore them and not permit login. The

computer is deceptively showing login prompts.

Hiding keeps the deception target from knowing about the hidden item’s existence or

its attributes. As a result, the target will be unaware of the item, certain it does not exist,

uncertain of its existence, or left with incomplete or inaccurate information about it. Hiding

can prevent discovery of the hidden item, or it can make discovery more difficult or time

consuming.

There are three different ways a target can discover a particular item:

1. direct observation of the item,

2. investigation based on evidence of the item, and

3. learning about the item from other people or agents.

These three means of discovery comprise the target’s discovery process. Hiding

works by defeating this process, which is driven by two elements: capabilities and a course of

 50

action. The target’s discovery capabilities are defined as the resources, skills, and abilities he

has for discovery. The discovery course-of-action is the way he carries out the discovery

process; it includes how, when and where the target looks for things. This suggests that the

target’s discovery process can be defeated by affecting either the target’s capabilities or the

target’s course of action. For instance, installing a firewall can ensure a hacker’s port scan is

not capable of directly observing a computer’s servers. Alternatively, deploying an enticing

honeypot could divert the hacker’s course-of-action so that his port-scans reveal the honeypot

rather than the hidden servers.

We assume the deception target intends to discover the hidden item. Another way to

hide is to affect the target’s intentions. For example, a hacker may be deterred from scanning

for and attacking vulnerable systems if he believes he will be caught and punished. Hiding by

altering intentions is not addressed herein. We now examine each of the three discovery

processes and how they can be defeated.

3.2.2 Direct observation

When hacking a network, much of what the hacker knows about the network is

learned by direct observation. For example, a hacker’s port scan allows him to observe a

network’s computers and servers. Once a hacker gains access to a computer, he can use

system utilities to observe the computer’s resources, such as files, programs, and running

processes; and he can use application programs to observe business and user data. Also, the

hacker can use network clients to observe servers and their contents. We first describe the

discovery process and then examine how hiding can defeat that process.

3.2.2.1 The discovery process for direct observation

The discovery process for direct observation involves sensing and recognizing. The

process is illustrated in Figure 3.2.2.1-1. The deception target observes using his own human

sensors, e.g., his eyes. He may also rely upon one or more external sensors, such as a

network port scanner or packet sniffer. Information flows to and from the sensors over media

(e.g., network cables, routers, and computer monitors). The hidden item is observed within

the environment in which it resides (e.g., a private computer network). When a human target

 51

receives sensory input, recognition occurs within his brain. Recognition is a cognitive

process involving knowledge and understanding. Recognition can be performed by using

human or artificial intelligence.
15

 Discovery occurs when the hidden item is identified (i.e.,

recognized) based on expected patterns.

private
network

deception

target

Internet

external

sensor

information

and its media

environment of

thing hidden

hidden
computer port scan by hacker

Figure 3.2.2.1-1 : The process of direct observation, illustrated by a computer-security

example

A sensor receives information and conveys it to the target in a form that is useful to

him. The sensor can convey information to the target in a variety of ways. For instance, when

the target observes a computer and uses his eyes as the sensor, the information is conveyed to

him is a visual image. When he observes the computer by using a port scanner as a sensor,

the information is conveyed to him descriptively via text. Typically, sensors work in a

deterministic manner, and their operation is based on mechanisms such as software and

electronics (e.g., the port scanner), or physiology (e.g., eyes). Recognition, on the other hand,

is much less deterministic. The target might miss identifying something even if it is seen,

15

 Recognition can also be performed by using animals, e.g., bloodhounds, but it is not likely in computer

security.

 52

especially if the target does not know what patterns to look for. Recognition depends on

knowledge and intelligence, real or artificial.

The target’s sensor and recognition capabilities are considered to be distinct elements

in the model. In practice, however, both capabilities may be present in a single device. A

network intrusion-detection system (NIDS), for example, can have a sensory component

consisting of a packet sniffer and a recognition component based on matching packet

information against attack signatures or statistical anomalies.

The target can discover things by actively searching for them or through passive

observation. Discovery involves bringing the sensors to bear upon a hidden item. The hidden

item is then distinguished and recognized from within the environment in which it resides.

3.2.2.2 How hiding defeats direct observation

Hiding defeats direct observation by defeating the targets sensor(s) and/or

recognition. The sensor is defeated if it does not provide him with distinguishable

information about the hidden item. For example, when steganography is used to hide text

within a picture, the target’s sensors (graphics browser and eyes) cannot distinguish the text

data.

Recall that the target’s discovery process can be defeated by: 1) defeating his

discovery capabilities, or 2) defeating his course of action, in discovery. For direct

observation, this means preventing the target’s sensor capabilities, or the way the sensor is

used, from providing distinguishable information about the hidden item. One way to achieve

this is by altering an element of the discovery process that is external to the deception target

and his sensors. Such elements include the hidden item’s location, appearance or

environment, or the information flows to the sensor. For example, placing a firewall between

a server and the Internet would alter the information flows between the server (hidden item)

and the hacker’s port scanner (sensor), and thereby defeat the scanner’s capabilities.

Alternatively, the hacker’s use of the scanner could be defeated by altering the server’s

location, e.g., the server could be placed on a subnet that the hacker is not likely to scan.

 53

Hiding can also be achieved by taking direct action against the target’s sensor

capabilities or his use of the sensor. For example, launching a denial of service attack against

the hacker’s computer could impair his use of the port scanner.

Table 3.2.2.2-1 summarizes and illustrates the options for defeating sensors. The first

column lists the general types of actions outlined above, while the second provides greater

specificity and examples. (Subsequent tables in this section follow this format.) The table

provides the deception planner with a framework for evaluating and developing hiding

techniques. The action-types listed in the first column are intended to be exhaustive and

mutually exclusive. The body of the table presents a broad, though not exhaustive, collection

of common hiding techniques for deception and denial. Some hiding techniques affect

multiple elements of the discovery process, so they could be placed in multiple tables or

categories within a table.

Table 3.2.2.2-1 : Hiding techniques that defeat the target's sensors

Action Type
Ways to Defeat Sensor

(sensor does not provide distinguishable info. about the hidden item)

alter location of

hidden item

place the hidden item where the target is not likely to observe:

• place critical files in obscure directories

place the hidden item where the target’s sensors cannot observe:

• hide laptop behind NAT (network address translation) device
• hide information within a cover medium, using steganography

 54

Action Type
Ways to Defeat Sensor

(sensor does not provide distinguishable info. about the hidden item)

alter appearance of

hidden item

make the hidden item not reflect information to sensor:

• computer eludes ping scans by not replying to pings

make the hidden item blend in with background:

• password file given non-descriptive name, to elude hackers’ automated searches

for files named ‘pass*’

alter the hidden item’s appearance, so the target’s sensor is not capable of observing

it:

• encrypt message (the target can observe the cipher text, but not the plain text)

alter environment

of hidden item

create noise in environment:

• add bogus files to make it harder to find critical ones

alter components in environment to prevent access to the hidden item:

• hide network data from sniffers by replacing Ethernet hubs with switches

alter information

flows to sensor

alter information needed by sensor:

• router drops incoming pings to hide its network’s computers from ping scans
• delay responses to login attempts so hacker does not have time to guess

password

add components to communication path

• firewall added to prevent certain flows to or from computers on network

diminish target’s
sensor capabilities

disable or degrade the sensor:

• perform a DoS attack against a hacker’s port-scanner

reduce the target’s time available for observation

• quickly detect and stop target’s reconnaissance, such as port scans

misdirect target’s
use of sensor

cause the target to observe at the wrong place or time

• create a diversion for the hacker

The target’s recognition process attempts to identify the hidden item from the

information provided by his sensors. Assuming the sensors provide distinguishable

Table 3.2.2.2-1 (continued) : Hiding techniques that defeat the target's sensors

 55

information about the hidden item, the target’s recognition is defeated if he is not able to

identify the hidden item from the sensory input. For instance, to hide a virtual private

network (VPN) server on a demilitarized zone (DMZ), three honeypot VPN servers could be

added to the DMZ. A hacker’s port scan reveals all four VPN servers, but he is unable to

recognize which is real.

The target’s recognition process can be defeated by:

1) defeating his recognition capabilities, or

2) defeating his course of action, for recognition.

His recognition capabilities are a function of: 1) his cognitive abilities (human or

artificial), 2) his skill and experience in identifying the hidden item from the information

provided by the sensor, and 3) his available resources, including time. His course of action

includes how, when and where he recognizes things, which are all influenced by his

expectations. For example, a hacker would expect, and more readily recognize, banking-

industry security devices on a bank’s network than on a typical home-network.

Table 3.2.2.2-2 illustrates how a target’s recognition process can be defeated in order

to hide. The table’s first column is the same as in Table 3.2.2.2-1. The reason is that

recognition is defeated by the same types of actions that are used to defeat sensors. Table

3.2.2.2-2’s second column lists specific hiding techniques applicable to defeating

recognition.

Table 3.2.2.2-2 : Hiding techniques that defeat the target's recognition

Action Type
Ways to Defeat Recognition

(the hidden item cannot be identified from info. provided by sensor)

alter location of
hidden item

locate where the target observes, but does not expect the hidden item:

• put sensitive document files in a software application’s directory

 56

Action Type
Ways to Defeat Recognition

(the hidden item cannot be identified from info. provided by sensor)

alter appearance
of hidden item

disguise the hidden item by making it mimic something expected in environment:

• use ports that make a server appear like a workstation to scanners

make the hidden item appear as something the target does not recognize:

• use unconventional names for sensitive files

alter environment
of hidden item

make things in the environment resemble the hidden item:

• place a highly valuable workstation on a LAN with many workstations that have

low value, but that appear the same to hackers’ scans

alter information
flows to sensor

generate false information that is received by the sensor, but misleads recognition

• honeyd thwarts scanning by impersonating computers at unused IP addresses

• nmap’s decoy port-scan hides the scan’s source address by sending many packets

with fake source addresses

diminish target’s
recognition
capability

disable or degrade the recognition process:

• exhaust hacker by overwhelming him with false information

reduce target’s time available for recognition

• stop hacker before he recognizes critical systems and information

prevent target from acquiring understanding needed to recognize hidden item

• limit publication of information that could aid hacker

misdirect target’s
recognition

process

cause target to expect something other than the hidden item

• misinform hacker about identity of network elements

3.2.3 Investigation

Investigation is a means of discovery that infers a thing’s existence from evidence

rather than direct observation. Investigation is used in many domains, for example law

enforcement (determining guilt based on evidence) and health care (diagnosing illness from

symptoms).

In general, investigation is used to discover a thing that existed in the past when it

Table 3.2.2.2-2 (continued) : Hiding techniques that defeat the target's recognition

 57

was either not directly observed or a reliable recording of the observation is not available

(e.g., computer log, video tape, or witness’ testimony). Investigation is also used to discover

things that exist in the present, but which cannot be directly observed. Things in the future

can be anticipated based on indicators, but cannot be investigated because evidence of them

does not exist. The investigation process involves induction and deduction. Moreover,

investigations can be simple and ad hoc, or involve extensive application of scientific

methods (such as forensics to investigate crimes).

Hackers often use investigation to obtain information about the current state of a

victim network’s topology, as well as its defenses, vulnerabilities, and assets. For example:

By acquiring a network’s computer names, a hacker might be able to deduce which

computers are vulnerable [MSK99]. Computers with names containing “test” such as “test-

network-gateway,” may be indicative of systems that have not been configured securely.

A variety of techniques are available for obtaining evidence that reveals firewalls and

their access control lists (ACLs) [MSK99]. Firewalking can reveal which ports are open or

blocked by a firewall [GS98].
16

Email sent to a public newsgroup can reveal the internal IP address of a sending

computer that is otherwise hidden by a NAT device.

Investigation is the first phase of most network attacks. Deceptive hiding can be used

to defeat these and other hacker investigations. When using deceptive hiding for computer

security, the hacker is the investigator and deception target. When hiding things from

investigation, the investigator is an adversary. Viewing an investigator as an adversary is

somewhat unusual, as investigators are normally the “good guys”, e.g., policemen and

scientists. Of course, when the hacker himself is hiding things, the cyber cops become the

investigators.

16

 Firewalking sends a TCP packet with an IP TTL field set to one hop beyond the firewall. If the reply is the

ICMP error message “time to live exceeded in transit”, then it is evidence that the TCP port is open. If there is

no reply, or the reply is the ICMP error message “communication administratively prohibited”, then it is

evidence that the TCP port is blocked.

 58

We first describe the process of investigation, and then turn to how that process can

be defeated. Our treatment of the investigation process is adapted from David Schum’s

excellent research on investigation for jurisprudence [Sch99].

3.2.3.1 The investigation process

Investigation is an iterative process of creating hypotheses and acquiring evidence

about the thing being investigated. Typically, the investigator works with incomplete

evidence, so there can be many plausible hypotheses that are consistent with the evidence. At

any point during the process, the investigator can either develop new hypotheses based upon

the available evidence or search for new evidence to answer questions relating to his current

evidence and hypotheses. As the investigation unfolds, each piece of new evidence reduces

the number of possible hypotheses and inspires the creation of more accurate and detailed

hypotheses. New evidence suggests new questions and hypotheses, and these in turn drive

the collection of further evidence. The information and understanding obtained is cumulative.

There are two types of hypotheses that the investigator develops and works with:

discovery hypotheses and collections hypotheses. Discovery hypotheses explain that which is

being investigated in terms of available evidence, and they culminate in the recognition or

discovery of the hidden item. Collections hypotheses explain where additional evidence

might be found, and they guide the investigator’s search for new evidence. New evidence can

be acquired through direct observation (section 3) or from other people or agents (section

3.2.4). The collected evidence may include false and irrelevant information that misleads the

investigator.

Investigations vary in the amount of evidence collected and hypotheses formed. Some

are simple and produce immediate results. For example, after breaking into a computer and

detecting evidence of a hidden keystroke logger, a hacker could immediately conclude that

the computer is a honeypot. Other investigations are more complex, requiring the investigator

to combine multiple pieces of evidence acquired over time. Instead of discovering a

keystroke logger, the hacker might observe that he cannot create outgoing connections and

that the computer contains no user data. By observing these conditions over time and

 59

considering them together, he deduces the machine is a honeypot.

The process of investigation requires creativity. It also requires deliberate choices.

Investigation comes at a cost, so the investigator cannot follow every hypothesis and seek

evidence to answer every possible question. He will be limited by his resources, including his

available time, to collect, process, and retain evidence. How the investigation proceeds will

depend upon the investigator’s resources and the choices he makes about how the resources

are used. If his choices are bad, he will make false hypotheses, collect the wrong evidence,

and waste his resources on useless paths of investigation.

Evidence often has a temporary existence, which can pose significant problems

during the initial investigation. As time progresses, an increasing amount of evidence will no

longer be obtainable. For example, log files are eventually erased or destroyed, and peoples’

memory fades. The investigator needs to gather and preserve evidence before the opportunity

is lost. However, much useful evidence may not be discernable at the beginning of the

investigation. The discernment of evidence requires understanding of the case, and the

investigator acquires understanding over time. The investigator can reduce the loss of

temporarily-available evidence. By making many hypotheses, and very general hypotheses,

the investigator can collect a large amount of evidence that is potentially useful. However,

the investigator has limited resources for collecting and storing evidence.

Investigation is a necessary first phase of most network attacks. Further, the

investigation process is weakest at the beginning of an investigation, as just described. Thus,

in hackers’ network-attack process, their initial network investigation can be a critical

vulnerability
17

, and relatively easy for defenders to exploit.

3.2.3.2 How hiding defeats investigation

The inherent difficulties of investigation can be exploited through deception. If

evidence is hidden, the investigator may form false hypotheses, ask erroneous questions, and

17

 A critical vulnerability is a vulnerability that permits us to destroy some capability without which the enemy

cannot function effectively [USM97].

 60

pursue futile investigation tracks. He may terminate what would have been a fruitful track. In

situations where several pieces of evidence are needed to discover a thing, it may suffice to

hide some of the evidence in order to prevent discovery. In situations where evidence has a

limited lifetime, it may be enough to interfere with the start of the investigation or delay its

progress.

The target’s investigation process is defeated if he does not recognize the hidden

item, or if his recognition is made sufficiently uncertain. This can be accomplished by

defeating either of the subprocesses that comprise the investigative process: evidence

collection and the creation of discovery hypotheses.

The target’s evidence collection process includes his creation of collections

hypotheses and his acquisition of information. This process is defeated by preventing him

from obtaining the evidence needed for recognition. Two types of actions can be taken to

defeat the target’s evidence collection:

1) alter the evidence available in the environment, i.e., do not create evidence, hide

evidence, or destroy evidence, and

2) weaken the target’s evidence-collection process by diminishing his capabilities or

by misdirecting his actions. See Table 3.2.3.2-1.

The target’s evidence collection can be defeated more effectively if his search for

evidence can be anticipated. There are two common searches for evidence that are especially

vulnerable. The first are superficial searches, which result when many things must be

examined, and time limitations prohibit a thorough examination. For example, a hacker’s

network scan may involve examining thousands of computers. To speed up the process,

hackers often first perform a superficial ping scan to locate running computers. They then

perform a port scan on the running computers. Such superficial examinations can be very

vulnerable to deception. Second are predictable searches for evidence performed by

computer programs. These searches lack human intelligence. For instance, hackers use open-

source vulnerability scanners, and these scanners look for specific types of evidence. Hiding

evidence from popular hacker tools can defeat a large portion of the hacker investigations on

a network.

 61

Table 3.2.3.2-1 : Hiding techniques that defeat the target's evidence collection

Action Type
Ways to Defeat Evidence Collection

(the necessary evidence is not collected)

block evidence

creation

find a way to do things so evidence is not created:

• configure outgoing mail server to remove sender’s IP address from mail headers

hide evidence
hide evidence that could be acquired by direct observation (section 3.2.2) or learned

from other people or agents (section 3.2.4)

destroy evidence

destroy evidence before the target can collect it, either at once or by entropy over

time

• remove sensitive information from memory and disk after use

diminish target’s
evidence-collection

capabilities

reduce the target’s time available for collection

• quickly detect and abort hackers before they find critical information
• delay the target’s evidence collection, so that it exceeds his available time

misdirect target’s

evidence-collection

misdirect the target’s collection activities, to keep him away from necessary

evidence, e.g., create false evidence that causes the target to look for evidence in the

wrong places

confuse the target, so he can’t form the collection or discovery hypotheses needed to

obtain necessary evidence, e.g., create false evidence that contradicts real evidence

reduce the target’s perceived reliability of necessary evidence, e.g., create false

evidence that is of the same type as the real necessary evidence, and allow the target

to learn that false evidence has been created

The other way to hide from investigation is by defeating the target’s creation of

discovery hypotheses. However, it is only necessary when the target is able to obtain the

evidence needed for recognition. Hiding is accomplished by preventing the target from

creating the discovery hypotheses needed for recognition. There are two ways to defeat his

creation of discovery hypotheses:

 62

1) ensure the target is not capable of creating the necessary discovery hypotheses,

and

2) ensure the target’s process of creating discovery hypotheses does not lead him to

recognize the hidden item.

Table 3.2.3.2-2 elaborates.

Table 3.2.3.2-2 : Hiding techniques that defeat the target's creation of discovery

hypotheses

Action Type

Ways to Defeat the Creation of Discovery Hypotheses

(even if the target has the necessary evidence,

he cannot create the necessary discovery hypotheses)

diminish target’s capabilities

for creating discovery
hypotheses

cause target’s capabilities to be insufficient, e.g., reduce target’s

available time

misdirect target’s creation of

discovery hypotheses

mislead target, e.g., create false evidence, or hide true evidence, and

thereby cause the target to form incorrect discovery hypotheses

confuse target, so he can’t form the necessary discovery hypotheses, e.g.,

create false evidence that contradicts real evidence

3.2.4 Learning from other people or agents

The third way a deception target can discover something is to learn about it from

another entity. This section describes the learning process and how it can be defeated.

3.2.4.1 The learning process

The learning process is a discovery process wherein the deception target learns of the

hidden item from a discovery agent. The discovery agent can be a person or a device with

sensor and recognition capabilities, such as a software agent. The agent discovers the hidden

item through its own discovery process, which can be direct observation, investigation, or

 63

learning. The agent then reports the discovery, and the report is communicated to the target.

The report can be sent directly to the target (e.g., via an email), or recorded and placed

somewhere accessible to the target (e.g., a website). The discovery agent may act

autonomously or under the direction of the deception planner or the target. Figure 3.2.4.1-1

illustrates.

direct observation,
investigation, or

learning from others

hidden thing

thing discovered

discovery agent

recorded received target learns of

agent’s discovery

target

(hacker)

trans-

mitted

discovery process
record of

discovery
reporting process

reported

communication of the report

Figure 3.2.4.1-1 : How the target learns from other people’s, or agents’, discoveries

In practice, the target may learn of a thing through a series of agents, e.g., the target

learns of the thing from person A, who learned of it from person B, and so on, the first person

having acquired it from direct observation or investigation.

Hackers acquire much of their knowledge from others. For instance, through

footprinting they learn about a victim’s network from publicly available information

[MSK99]. Typical sources include DNS servers, which record the IP addresses and domain

names of computers on a network, and company websites, which may contain information

about the company’s networks. Hackers also learn through distribution lists, chat channels,

and other online forums.

 64

3.2.4.2 How hiding defeats learning

Hiding defeats the learning process by defeating the discovery agent, communication

of the report, or the target’s recognition. The discovery agent is defeated if it does not

discover the hidden item or attempt to report it. The communication of the report is defeated

if the report is not successfully transmitted, recorded, or received by the target (assuming the

discovery agent has attempted to communicate the report). The target’s recognition is

defeated if the target does not learn of the hidden item from the report (assuming the target

has received the report). Table 3.2.4.2-1 elaborates.

Table 3.2.4.2-1 : Techniques for hiding when the target learns from other people’s, or

agents’, discoveries

Action Type
Ways to Defeat the Discovery Agent

(the hidden item is not discovered and reported)

hide item from
discovery agent

hide item from the agent’s direct observation (section 3.2.2)

• give unused addresses on a network fake names to hide real computer-names

in reverse DNS lookups.

hide item from the agent’s investigation (section 3.2.3)

alter discovery
agent’s reporting

process

instruct discovery agents under control of deception planner to omit hidden item

from reports

• omit high-valued assets from published network diagrams
• omit sensitive network information on public technical-support forums

diminish discovery
agent’s capabilities
for serving target

cause discovery agent to not serve target:

• bribe or “turn” hackers who serve as discovery agents for others
• detect and remove a hacker’s network sniffers (discovery agents)

degrade capabilities of discovery agents:

• modify a hacker’s sniffers so they garble captured data. The hacker may

regard them as too problematic to use on the network.

interfere with target’s directions to the discovery agent:

• install a firewall to block a hacker’s access to an installed sniffer

 65

Action Type Ways to Defeat Communication of the Report

(the hidden item is not successfully communicated)

alter transmission or
receipt of report

block the transmission or receipt of the report

• configure firewall to drop outgoing ICMP packets, which are used by the

hacker tool LOKI to communicate covertly

alter recorded report

falsify or destroy the recorded report

• when a hacker’s vulnerability scanner (discovery agent) is found running on a

computer inside a network, falsify or erase the recorded results.

Action Type
Ways to Defeat the Target’s Recognition

(the target does not learn of the hidden item from the report)

affect report

confuse target by causing discovery agent to report things resembling hidden item

• honeyd impersonates many vulnerable computers, causing a hacker’s

vulnerability scanner to return an overwhelming number of false positives.

diminish target’s

learning capability

cause the target’s learning resources to be insufficient

• reduce the target’s time available for the report, e.g., law enforcement’s

aggressive pursuit of a hacker causes him to spend more time on evasion and

defense, and thus he has less time for learning about his victims’ networks.

3.2.5 Summary of the hiding model

This section explained deceptive hiding in terms of defeating the target’s discovery

process. The model includes three means of discovery: direct observation (sensing and

recognizing), investigation (evidence collection and hypothesis formation), and learning from

other people or agents (discovery by an agent, report communication, and target recognition).

For each, hiding defeats one or more of the components of the discovery process. This is

accomplished by ensuring that the target is not capable of discovering the hidden item or that

the target’s course-of-action does not lead him to discover the hidden item.

The process model offers a conceptual framework for developing new deceptive

hiding techniques and for evaluating existing techniques. The model also offers a common

Table 3.2.4.2-1 (continued) : Techniques for hiding when the target learns from

other people’s, or agents’, discoveries

 66

frame of reference for collaboration among security professionals. When hiding a particular

thing, the deception planner can determine which discovery methods the target is likely to

use. For each method, the tables of hiding techniques can be used to consider the possible

ways to hide.

The hiding model is applicable to both deceptive hiding and non-deceptive hiding

(i.e., denial). Non-deceptive hiding defeats the target’s discovery process, but without

misleading him.

 67

4 Deception-based intrusion detection systems

This chapter introduces two deception-based security devices: Honeyfiles and Net-

Chaff. The Honeyfiles system extends the network file system to provide bait files for

hackers. These files trigger an alarm when opened. The Net-Chaff system employs

computer-impersonations to detect and contain hacker’s network scans within an intranet.

4.1 Net-Chaff: deception-based scan detection and containment

A system for defending against scans was designed and then modeled analytically and

by simulation. The system is named Net-Chaff, as it uses deception-based countermeasures.

Its capabilities include: scan detection, automated scan containment, and a simple means for

monitoring the whole network. The Net-Chaff analysis (Chapter 5) indicates that the system

can provide substantial improvements over current scan defenses such as NIDSs [Naz04].

The Net-Chaff design uses, for the most part, existing computer-security components, but

Net-Chaff combines and applies them in a novel and strategic way.

Net-Chaff is intended to defend against hacker scans within a protected intranet, e.g.,

inside a corporate network. One condition for installation of Net-Chaff is that this intranet

must be comprised of routed LANs. Net-Chaff detects scans by monitoring traffic to the

intranet’s unused addresses. This monitoring technique provides significant benefits for

accurate and rapid scan detection. Net-Chaff also impersonates computers at the unused

addresses, which can impede scanner’s progress and improve Net-Chaff’s defensive

effectiveness. Once Net-Chaff detects the scan, it then attempts to isolate the scanner from

the network. This is done by locating the router interface for the scanner’s LAN, and setting

the router’s access control list (ACL) to block the scan packets. In addition, the router can be

directed to tunnel scanning packets back to Net-Chaff, which impersonates computers and

further monitors the scan.

This section describes how Net-Chaff works, and it frames Net-Chaff’s requirements

for defending against scans. This section’s scope is limited to Net-Chaff’s architecture and

requirements. The subsections that follow cover Net-Chaff’s environment (including

 68

assumptions about scanners and intranets), its architecture, and its requirements (including

scanning-related requirements and performance objectives). The analysis of Net-Chaff’s

effectiveness, and its use of deception, is presented later, in Chapter 5.

4.1.1 Environment and assumptions

Net-Chaff is intended for defending intranets from hackers’ active scans. Active

scanning is one of the primary techniques hackers use to obtain information about a network

[MSK99]. Active scanning involves sending probes to network addresses, to determine if a

computer is at the address, and to obtain information such as the computer’s operating

system type and the services it is running [MSK99]. Hereafter, active scanning will be

referred to as simply scanning. Scans are also used to obtain network information, including

router topology and firewalls’ filtering-rules. When a scan probes a network address, the

probe may just collect information, or it may attempt to attack directly, in which case the

scan is referred to as a scan-and-attack. A scan-and-attack example is the Sapphire worm

that sends a single UDP attack packet to randomly chosen addresses [Naz04]. Hacker’s

scanners can be implemented as stand-alone programs (e.g., nmap), or as components of

hacking tools such as worms and vulnerability scanners (e.g., Nessus) [MSK99].

Scanning is an initial step in many, perhaps most, network attacks. Scanning can be

performed very quickly, and this enables hackers to rapidly find and exploit network

vulnerabilities and assets. For example, Internet worms can infect hundreds of thousands of

computers within hours [Naz04]. Their rapid spread is due to quick scanning and intrusion,

and because of their self-replicating nature, the growth of infection can be exponential. Net-

Chaff’s primary objective is to quickly detect and stop scans in order to prevent them from

obtaining information needed to carry out attacks. Net-Chaff has the potential for stopping

attacks before they start and for preventing worms from spreading. Additional information

on scanning, including references, is provided in section 4.1.3.1.

Net-Chaff is intended for use within a protected intranet, e.g., inside a corporate

network. A protected intranet has a secure perimeter that restricts access from the outside,

e.g., firewalls and DMZs protect the intranet from Internet attacks [CIS01]. It is assumed

 69

that the perimeter is not impenetrable, but that it is fairly secure. Consequently, scanning is a

rare and significant event within this intranet, and these scans should be detected, contained,

and investigated rapidly. In contrast to secured intranets, scanning on the open Internet

occurs frequently. As an indicator, in 2003, researchers determined that intrusion attempts

on the Internet were on the order of 25 billion per day [YBU03]. Thus, scans from the

Internet will be frequent on a secure intranet’s perimeter. While most will not pass the

perimeter, those that do may cause considerable harm if they lead to compromise of an

internal machine, and from there, attack other internal machines, e.g., as with worms. Inside

a secure perimeter, individual computers may be less resistant to attack and infection, e.g.,

due to a false sense of security from the intranet perimeter.

One of the major assumptions we make about an intranet in which Net-Chaff operates

is that the intranet is routed, i.e., it consists of LANs that are connected by one or more

internal routers. This is not an unusual assumption. Most large enterprise networks have

such an architecture. In contrast, Net-Chaff is not designed for use on a flat switched

network (i.e., Ethernet) with a firewalled gateway. Net-Chaff could be extended for use on

such networks, but that is left for future research.

4.1.2 Net-Chaff system

This section describes the Net-Chaff system and how it works. Net-Chaff has four

functional roles: 1) impersonation, 2) scan detection, 3) scan containment, and 4) scan

surveillance.

4.1.2.1 Intranet use

Net-Chaff works by monitoring traffic to the intranet’s unused addresses, and by

impersonating computers at the unused addresses. While almost all of the traffic to unused

addresses is typically accidental, some of it may be from hackers, e.g., from scans and attacks

from compromised machines within the intranet [Spi02]. In a well controlled environment,

scans will make up a very small portion of the non-broadcast traffic sent to used addresses,

but they may make up a very large portion of the non-broadcast traffic to unused addresses.

Thus, it can be much easier to detect scans by monitoring traffic to unused addresses, rather

 70

than to used addresses. By impersonating computers at the unused address, Net-Chaff can

also: slow down scans, reduce accuracy of scan findings, improve scan detection sensitivity,

bait hackers into follow-on attacks, and obtain information for incident response and

forensics. Net-Chaff’s deception objectives are further discussed in section 4.1.3.2

This work focuses on using Net-Chaff on IPv4 networks. However, many of the

concepts can be applied to IPv6 networks. In IPv4, an intranet can be a single large address

space, or it can be subdivided into any number of subnets, e.g., using Classless Internet

Domain Routing (CIDR). Also in IPv4, an intranet can use the reserved class A network

(10.0.0.0). For most intranets, this provides a large number of unused addresses and a high

ratio of unused to used addresses. For example, a large corporate intranet with 20K

computers would have over 16M unused addresses, and a ratio of 800 unused addresses for

every used address. Also, the subnets can be designed to spread-out the computers over the

address space. When using Net-Chaff, scans of such a network would likely encounter many

impersonated computers before finding a real computer.

Net-Chaff’s operation is illustrated in Figure 4.1.2.1-1, and its numbered items, e.g.,

(1), are referenced in the descriptions. In the figure, the intranet contains a gateway router

that is connected to the Internet. In this work, only a single gateway is considered and

solutions for multiple gateways are left for future research. The “clouds” in the figure

represent used subnets, i.e., subnets that contain real computers. Each used subnet is a local

area network (LAN), and the LANs are connected to intranet routers. In contrast to used

subnets, unused subnets contain no real computers. It is assumed that there is one LAN per

used subnet, and vice versa. Also, each LAN is connected to one router interface. It is

possible to adapt Net-Chaff for use on networks with different configurations of LANs,

subnets, and routers, but it is beyond the scope of this research.

Net-Chaff manages some or all of the intranet’s unused subnets. Traffic to the

unused subnets is routed to the Net-Chaff WAN server (1). There, Net-Chaff’s impersonation

component deceptively portrays computers on the unused subnets. In reality, the

impersonated computers are non-existent. Router manufacturers, and researchers working on

network-abuse monitoring, have developed a simple way of collecting packets destined to

 71

unused subnets on an intranet [YBP04]. The intranet routers are assigned a static default

route that forwards those packets to a single network location. This technique can be used to

route packets to the Net-Chaff WAN server.

used

subnets

intranet

routers

(1)
net-chaff

WAN server

(2)
scanner

(4) surveillance
tunnel

(3) scan
containment

(5)
net-chaff

LAN server

gateway
router

Internet

secure
perimeter

Figure 4.1.2.1-1 : Net-Chaff architecture

4.1.2.2 Impersonation

Net-Chaff’s impersonation component replies to scans, to make it appear that there

are computers at the unused addresses. Net-Chaff uses low-level impersonations of

computers and servers. These are typically simple impersonations that are made by using

packet-data below the application layer. This data includes the TCP/IP packet headers that

 72

establish communication between computers and that control routing. For instance, a

computer can be impersonated by sending a TCP ACK packet in response to a half-open

TCP scan [Fyo97]. In addition, Net-Chaff’s low-level impersonations would include a

rudimentary server that is referred to as a null server. It can be configured to return no data

or random data, and it can be implemented as a TCP or UDP server.

Low-level impersonations are used because they are relatively easy to implement and

they can effectively deceive many types of scans. To scan a large number of addresses, scans

must be fast. Thus, many scans’ probes use small amounts of data below the application

layer, and the probes’ interactions with computers are simple. Such probes can be easily

deceived; a good example is an ICMP ping scan. It probes an address by sending an echo-

request packet. A computer can be impersonated by simply sending a fake echo-reply packet

in response. In contrast to low-level impersonations, application-level impersonations can be

much more difficult to implement and a different impersonation would be needed for each

type of server, e.g., FTP and HTTP. When scans do probe at the application-layer, the low-

level impersonations are still effective for slowing down the scans and for obtaining

information about the scans.

4.1.2.3 Detection

In the Net-Chaff WAN server, the detection component monitors the incoming traffic

to the unused subnets, and it detects possible scans (2). Net-Chaff’s impersonation

component crafts replies to the incoming packets. To build Net-Chaff’s detection and

impersonation components, there are two problems that must be solved. First, scanners can

use fake source addresses in the packets they send, and such spoofing can prevent detection

of the scan source. Net-Chaff solves this problem by using known spoofing

countermeasures. To reduce spoofing from the Internet, the gateway router can drop packets

from the Internet if their source addresses is an address in the intranet space. To protect

against spoofing from within the intranet, one can use intranet routers. The intranet routers

can be configured so that a packet from a directly-attached subnet must have a source address

from that subnet, or the packet is dropped. This simple solution restricts spoofing to

addresses within the scanner’s subnet. Further steps can be taken to prevent spoofing from

 73

individual intranet computers; however, these solutions are more complex and more

expensive [CIS04].

The second implementation problem is Net-Chaff’s performance requirements. The

Net-Chaff server can potentially receive a high rate of scan packets, and thus it needs to be

capable of generating impersonations at a high rate. Research in Internet abuse monitoring

has produced techniques for generating high rates of computer impersonations [YBP04].

Some of the impersonations are too simple for use with Net-Chaff, but the techniques could

be extended for use in the Net-Chaff WAN server.

4.1.2.4 Containment

There are two steps in the process of stopping a scan—detection and containment.

Once the scan is detected, it is necessary to isolate (or block) the scanner from the network,

to prevent further scanning and attacks. Isolating the scanner is carried out by Net-Chaff’s

containment component. For scans from within the intranet, Net-Chaff locates the router

interface for the subnet from which the scan originated. Net-Chaff then modifies the router’s

access control list (ACL) to block the scan packets (3). The router could drop packets from

the scanner’s IP address, or if fake source addresses are being used, the router could drop all

packets from the scanner’s subnet. Other possible containment techniques include

performing a denial-of-service attack against the scanner (e.g., a packet flood), and

instructing a managed (Ethernet) switch to block the scanner’s LAN or VLAN access. For

scans originating from the Internet, Net-Chaff can block them at the gateway router. Some,

or all, of the incoming Internet traffic could be blocked. If the Net-Chaff WAN server is

receiving scans from the Internet, there is likely to be serious problems in the intranet’s

perimeter security, e.g., its firewall.

A key attribute of Net-Chaff’s performance is its ability to prevent scans from finding

real computers. To discuss this, several terms must be defined. Net-Chaff’s detection time

is the time from when the scan starts until the time it is detected. Net-Chaff’s blocking time

is the time from when the scan is detected until the time it is isolated from the network. Net-

Chaff’s containment time is the time from when the scan starts until the time it is contained,

 74

which is also the sum of the detection and blocking times. The scanner’s ability to get

information about real computers is primarily a function of: 1) Net-Chaff’s containment time,

2) the scan rate, and 3) within the network, the number of real computers, unused addresses,

and addresses managed by Net-Chaff.

Net-Chaff’s containment function also involves slowing-down scans, and it does this

in two ways. Net-Chaff uses a large number of unused addresses, and they reduce the rate at

which scanners probe real computers (i.e., real computers per probe). Net-Chaff also reduces

the scanners’ probe rates (i.e., probes per unit time). This is accomplished by using

impersonations that cause the scanner to send more data than it otherwise would for a probe.

Also, Net-Chaff can insert delays in the impersonations’ replies. The delays slow down

scans that suspend probe transmission when waiting for replies, e.g., scans that are serial, or

not fully parallel.

A drawback of automated containment is the risk of unwarranted service outages to

individual addresses, especially for critical network operations [PSN04]. Unwarranted

network service outages can be caused by false positives, and by containment of benign

scans. Net-Chaff can mitigate such risks. One solution is to use different containment

criteria, depending on the value of the contained computer. For instance, a critical system

could be contained only when scan detection is highly certain, or when dangerous scans are

detected, e.g., from malicious worms. Arbor Network’s worm-containment system employs

a different solution for mitigating unwarranted network outages. This system monitors router

logs to learn the network’s normal communication paths, and its containment rules do not

block those paths [PSN04].

4.1.2.5 Surveillance

Having contained the scan, Net-Chaff’s surveillance component will set-up and

conduct surveillance on the scan. For scans originating within the intranet, Net-Chaff builds

a network tunnel between the scanner’s subnet and the Net-Chaff server (4). For scans

originating from the Internet, Net-Chaff builds a network tunnel between the gateway router

and the Net-Chaff server. All of the scanner’s packets are sent over the tunnel to the Net-

 75

Chaff WAN server, including attempted scans of real computers. The primary objectives of

surveillance are to confirm the scan and to collect intelligence for incident response and

forensics. During surveillance, Net-Chaff’s impersonation component will craft deceptive

replies that: aid surveillance, reduce scan accuracy, and waste the scanner’s time and other

resources. This dissertation focuses on Net-Chaff’s other components, and further design of

the surveillance component is left for future research.

4.1.2.6 Net-Chaff LAN servers

Net-Chaff can also defend against scans within used subnets. This is done by

deploying Net-Chaff LAN servers (5) on used subnets. A Net-Chaff LAN server is assigned

all, or a portion, of the unused addresses within a used subnet. To enhance Net-Chaff’s

capabilities, the intranet’s used subnets can be designed to be lightly populated by real

computers, thus leaving a large number of unused addresses. For example, an 8 bit subnet

has 254 addresses that can be assigned to computers. If half the addresses are used by real

computers, there will be 127 unused addresses.

When the intranet’s used addresses are grouped together in the address space, they are

vulnerable to rapid discovery by sequential scans. Also, the grouping of used addresses can

substantially reduce Net-Chaff’s scan detection capabilities, as a sequential scan could

encounter relatively few unused addresses. Ideally, for Net-Chaff, the intranet’s used

addresses would be randomly distributed within the entire address space, to avoid the

problems from grouping. However, such a distribution is generally impractical. A more

feasible solution might be for the used subnets to be randomly distributed within an address

space. Also, within each used subnet, its used addresses could be randomly distributed. The

distribution of used addresses is a topic left for future research.

When a Net-Chaff LAN server receives packets, it tunnels them to the Net-Chaff

WAN server (1) for use in scan detection. The Net-Chaff LAN server also contains an

impersonation component that crafts replies to the scanner. Containment and surveillance

are performed by the WAN server, as described earlier. It is not necessary for all used

subnets to have a Net-Chaff LAN server. However, if Net-Chaff LAN servers are not used,

 76

then it can be easy to detect the unused subnets that are managed by Net-Chaff’s WAN

server, i.e., only those subnets will have Net-Chaff impersonations.

4.1.2.7 Expected uses and benefits

Net-Chaff’s expected uses and benefits fall into three categories: intrusion detection,

intrusion prevention and intrusion response. A secure intranet environment affords a number

of benefits for intrusion detection. Under our assumptions, monitoring traffic to unused

addresses amplifies Net-Chaff’s ability to detect scans, especially when the ratio of unused to

used addresses is large. It is expected that Net-Chaff would receive packets primarily from

five sources: hackers’ scans, scans used for network management, end-users’ addressing

mistakes, broadcast packets from routers and network servers, and possibly other benign

scans. The network management scans can be identified by restricting them to specific

source addresses. Addressing mistakes, broadcast packets and benign scans are assumed to

be low in volume and/or easily identified. The hackers’ scans may be of several types. Most

hacker scans are expected to be easily and accurately identified because of abnormalities

such as packet volume, distinctive access patterns to addresses and ports, or unique

signatures in the packets themselves (e.g., intentionally mal-formed packets) [Ark01, Naz04].

Of course, it is possible for hacker scans to be disguised to hide amongst the benign packets

that Net-Chaff sees, but this would greatly limit scan capabilities. The advantage of Net-

Chaff is that, by design, it filters out most of the legitimate traffic. This filtering amplifies

the relative occurrence of harmful traffic and makes it more conspicuous. It provides Net-

Chaff with a more sensitive anomaly detection mechanism and thus has a better chance of

detecting disguised packets.

In contrast to Net-Chaff’s monitoring of unused addresses, it is typical for network

intrusion detection systems (NIDS) to monitor traffic over active network links. On these

links, it can be very difficult to accurately identify malicious traffic from amidst the

relatively large volumes of legitimate traffic [Naz04]. As far as the author knows, there are

few systematic approaches that are constructed to deal comprehensively with intranet scans.

One such system is Arbor Network’s Safe Quarantine. Its detection mechanism faces the

same difficulties as typical NIDSs, as it monitors the network’s router logs [PSN04].

 77

Another benefit from a secure intranet is that internal hacker scans are expected to be

relatively infrequent, which allows Net-Chaff to log and analyze (e.g., correlate) all scan

activity over long periods of time. The logs can be used for incident response and forensics,

including the identification of new types of scans. Of course, once a new type of scan is

identified, there are incident response concerns, such as where, why and how it occurred. In

addition, Net-Chaff’s long-term logs and log-analysis can also be used to detect slow scans.

Detecting slow scans has been difficult for NIDSs that monitor network links, as the high

volume of traffic limits logging capabilities [Naz04].

Net-Chaff is able to exploit scanning’s inherent weaknesses. Scanning is used to

explore unknown portions of the network. As a consequence, it is essentially impossible for

active scans to avoid the unused addresses monitored by Net-Chaff. Further, as mentioned

earlier, scans tend to use simple packets that can often be deceived to advantage. Also, Net-

Chaff should be able to detect many active scans based on their anomalous traffic volume

and traffic patterns. Many new and unknown scanners, including worms, should have these

same types of detectable traffic.

Net-Chaff’s secure intranet environment also affords advantages for intrusion

prevention and response. For many such intranets, scan containment and response would be

worthwhile, and even necessary, due to the potential losses associated with a scan, e.g., an

infected laptop or internal hacker. Automated containment, which carries its own perils,

should be possible due to: rapid and accurate detection, access to routers’ ACL’s, and

domain knowledge that can be used to reduce the risks of automated containment.

In a routed intranet, it is fairly straightforward for a single Net-Chaff server to

provide network-wide monitoring of traffic to the intranet’s unused addresses. In contrast, it

is difficult for an NIDS to provide network-wide monitoring of all network links, because of

the number of links that need to be “spanned” or “tapped”, and the volume of legitimate

traffic. In addition, the intranet provides opportunities to shape network traffic so that scans

are detectable, e.g., the use of router ACLs in preventing source-address spoofing.

Ultimately, Net-Chaff’s effectiveness must be assessed relative to its ability to thwart

 78

hacking, both manual and automated. In the overall hacking process, scanning is often a key

initial step [MSK99]. Scanning has been one of hackers’ strengths, as it often allows them to

obtain useful network information quickly, accurately and stealthily. By rapidly detecting

and containing scans, Net-Chaff can stop scan-initiated hacking, when it first starts. This

makes scanning a critical vulnerability for hackers. In fact, Net-Chaff should be able to

prevent worms from spreading on an intranet because it not only detects scans, but also

contains the source. NIDS developers have identified three conditions that must be met to

stop worms, and Net-Chaff fulfills all of them: 1) “the worm must be detected and

characterized before it has a chance to infect a critical mass of hosts”, 2) “worm suppression

must be accomplished nearly automatically, without jeopardizing critical business

processes”, and 3) “detection and suppression must be applied to the internal network as a

whole, not just at the Internet perimeter” [PSN04].

One of the major benefits of the Net-Chaff concept is that it can increase intranet

security without affecting legitimate network operations. Intranets often have a highly-

secure network perimeter, but relatively low security within the perimeter. The internal

network is a trusted environment and its low security makes operations much easier, e.g., file

sharing. However, for commercial organizations, it is estimated that 50% of security

problems originate internally [Yua05]. Net-Chaff offers a means for countering such internal

threats without making legitimate operations more difficult or costly on daily basis. Of

course there is a cost for Net-Chaff itself, including: the deployment of appropriate routing

engines and network design, system installation, and on-going operating costs.

4.1.3 Requirements

This section presents Net-Chaff’s primary requirements. They provide the basis for

the Net-Chaff analysis, which is presented in Chapter 5. First, scanning is presented, from

Net-Chaff’s perspective. Then, Net-Chaff’s performance objectives are presented.

4.1.3.1 Scanning

This section describes hacker scanning, from the perspective of system requirements

for Net-Chaff. Arkin defines scanning as, “a technology, which uses stimuli (packets) in

 79

order to provoke a reaction from network elements. According to responses, or lack thereof,

received from the queried network elements, knowledge about a network and its elements

will be gathered” [Ark05]. A scan consists of one or more probes. The scan packets sent to

learn about a network address will be referred to as a scan probe. Within a probe, an

individual packet is referred to as a probe packet. The packets received in response to a

probe are referred to as a probe reply, or a probe response.

A probe can consist of one or more packets, and the packets may, or may not, be

synchronized. A probe’s successful completion may, or may not, require a reply from the

address being probed. Figure 4.1.3.1-1 illustrates. (A) is a single-packet probe with no

required response, e.g., a single-packet UDP attack, used in a scan-and-attack. (B) shows a

single-packet probe, with a required response, e.g., an ICMP ping. (C) is a multi-packet

probe, that is synchronized with a required probe response, e.g., as in a TCP half-open scan

[Fyo04]. There are many other possible combinations of probes and responses.

scanner target

(A)

single-packet probe,

no response required

scanner target

(C)

multi-packet probe,
synchronized with

required response

scanner target

(B)

single-packet probe,

response required

Figure 4.1.3.1-1 : Examples of probe types

 80

4.1.3.1.1 Scan objectives

The overall objective of scanning is to obtain some information about a network and

its computers. There are various types of scans, and they can be categorized according to the

type of information that they obtain [Ark01, MSK03, VVZ02]. The types of scans that are

most relevant to Net-Chaff are listed in Table 4.1.3.1.1-1. These scans are widely used, and

Net-Chaff’s low-level impersonations are intended to counter them. There are other types of

scans, but those that the author is aware of are similar to these scans from the perspective of

how Net-Chaff counters them. Two examples are application-layer vulnerability scans and

processor fingerprinting. The scan-and-attack is listed in the table’s last row, and it was

defined earlier (section 4.1.1). The scan-and-attack is unlike other scans, as it includes an

attack. Other types of scans just collect information and may be a predecessor to an attack.

Table 4.1.3.1.1-1 : Common types of scans, categorized by the scan objective

Scan name Scan objective Examples

host scan find computers often one small packet per host, e.g.,

ICMP ping, ACK ping, ARP request

port scan find servers sends one or more packets per port

(TCP or UDP)

O/S fingerprinting determine a host’s

operating system type

send a set of packets that elicit

responses unique to a particular O/S;

typically does not work well if no

servers are running on the host

server

fingerprinting

determine a server’s

make and version

banner grabbing; for TCP, requires

opening a full connection to a server

network mapping locate routers and

determine what hosts

and routers are

connected to them

traceroute; there are several ways of

tracing routes through the network;

probes are invariably multi-packet and

require replies

firewalking determine a firewall’s

filtering rules, and what

hosts and servers lie

behind it

use packets with an IP TTL that

expires one hop past the firewall;

typically a multi-packet probe that

requires replies

 81

scan-and-attack compromise computer attempt connection, and if successful,

launch attack; for TCP, this a multi-

packet probe that is synchronized with

required replies

4.1.3.1.2 Combining scans with attacks

For hackers, scans are a part of the larger hacking process. There are general

techniques for using scans within the hacking process, and they will be referred to as scan-

usage techniques. Three common techniques are described here, and they are modeled from

the perspective of Net-Chaff design and analysis. Specific examples are given to illustrate

the models. The examples will also be used in the evaluation of Net-Chaff in chapter 5.

Scan-and-attack: Scan-and-attack works by choosing addresses and directly

attacking them. This is a simple technique, and it has been used in worm propagation

[Naz04]. For example, the Sapphire worm conducts a UDP scan-and-attack. It uses a single

UDP attack packet, which it sends to random addresses. The packet is approximately 400

bytes, and it carries the code both to break into hosts, and to propagate itself.

A second example of scan-and-attack is provided, using TCP. It is loosely modeled

after the Slapper worm’s web-server attack [Naz04]. Figure 4.1.3.1.2-1 illustrates. In this

model, the scanner randomly chooses addresses and attempts to connect to them. If a web-

server is not accessible, an ICMP message is returned. If a server is accessible, TCP OPEN

is performed, then the server sends its banner, and finally, the scanner sends a single 400-

byte attack packet. This TCP scan-and-attack uses a multi-packet “probe” that is

synchronized with required responses from the probed host, and that also contains attack

code.

Table 4.1.3.1.1-1 (continued): Common types of scans, categorized by the scan

objective

 82

TCP Open

server sends banner

scanner sends attack packet

Scanner Server

time

Figure 4.1.3.1.2-1 : TCP scan-and-attack

Filtering scan: The second scan-usage technique is called a filtering scan. This scan

is the first part of a two-step process. In the first step, the filtering scan locates prospective

computers, and in the second step, the prospective computers are accessed. Typical forms of

access are an additional filtering scan, and/or an attack. While step one can be a single-packet

probe, it does require a reply from the scanned host. The algorithm for filtering scans is:

WHILE (addresses left to scan)

 perform the filtering-scan on a set of addresses

 access prospective computers found

END WHILE

For the filtering-scan, the set of addresses scanned can vary in size from one to the

whole network. On networks protected by Net-Chaff, an effective technique is to use the

filtering scan until a prospective computer is found, and then access that computer. From the

perspective of the attacker, this model can maximize the number of prospective computers

accessed before containment. Often, the filtering scan’s purpose is to provide efficiency over

 83

direct access to the addresses, e.g., speed-up the scan. For the hacker, a filtering scan is

useful if:

[(time for filtering scan on all addresses) + (time to access prospective computers)] <

(time to directly access all addresses)

This calculation applies when the number of successful accesses is the same with, or

without, the filtering scan. This is often the case when there are no scan defenses.

As an example, a filtering scan could be used to speed-up the UDP scan-and-attack

that was presented earlier. It sends a 400-byte UDP packet to network addresses, but

typically, the targeted UDP server only runs at a small fraction of those addresses. A UDP

scan, such as the one offered by nmap [Fyo04], could be used as a filtering scan. This scan’s

probes use a 0-byte UDP packet. If an ICMP message is received in reply, then the targeted

port is inaccessible, otherwise, the port may be open. The UDP scan could be performed

quickly by using parallel scanning techniques to continuously transmit probes. This filtering

scan could prevent sending the 400-byte attack packet to addresses without servers, and

thereby speed-up the overall attack.

Information-retrieval scan: The third scan-usage type is the information-retrieval

scan. From Net-Chaff’s perspective, this scan just involves the collection of information for

some later purpose. If the scan discovers computers, any attempts to attack the computers, or

further access them, occur after Net-Chaff has contained the scan. Examples of this scan

include host scans, such as ICMP ping, and port scans, such as UDP scans and TCP SYN

scans [Fyo04]. If a filtering scan is used, and prospective computers are not accessed before

containment, then the filtering scan will look the same as an information-retrieval scan.

4.1.3.1.3 Scan tactics and techniques

Numerous scanning techniques have been implemented in many different scanning

tools [Ark99, Fyo04, MSK03, VCI99]. McClure, et al., provide a review of scanning process

and methods, and they describe five scanners than run on Unix, seven that run on Windows,

 84

and two fingerprinting tools [MSK03]. They also describe numerous scanning and

fingerprinting techniques. Some of the scanning tactics and techniques are especially

relevant in the Net-Chaff context, and they are summarized here.

4.1.3.1.3.1 Address-selection

For each scan probe, the scanner chooses an address from the network space. There

are several address-selection techniques used by hackers, including worms [Fyo04, Naz04].

The techniques that are most relevant to Net-Chaff are those that are effective on intranets.

Two types of address selection are sequential and random. For a given address range,

address selection can be made sequentially (i.e., address n+1 is selected after address n), or

addresses can be selected randomly.

There are two techniques for choosing random addresses. The most efficient

technique chooses addressees from among those that have not already been chosen.

Borrowing from probability theory, this selection technique will be referred to as sampling

without replacement. The other technique randomly selects addresses from within the entire

address space, which is sampling with replacement. The latter is less efficient because an

address can be selected more than once. In addition, when there are multiple simultaneous

scans (e.g., a distributed scan), an address can be probed more than once, unless the scanners’

use sampling without replacement in a coordinated way.

A technique that is used by worms is called island hopping. It selects addresses

randomly, but addresses near the scanner are more likely to be selected. This technique takes

advantage of the tendency for computers to be clustered in the Internet space. As the worm

propagates, its descendents will be more likely to select addresses near themselves. The

island hopping technique can also be adapted for use in scanners that do not propagate. The

scanner would randomly choose addresses, and once a computer is found, the scanner would

then choose addresses near that computer. Borrowing from the numerical optimization field,

if a successive set of addresses does not yield a result, an attacker may chose to “hop”

elsewhere by deliberately choosing random addresses at remote locations, to see if it can hit

another “island.”

 85

4.1.3.1.3.2 Scan performance

Three scan performance-attributes are: speed, accuracy, and stealth. These attributes

typically counter each other, i.e., improving one may degrade another.

Speed: There are a number of known techniques for increasing scan speed. A single

scanner can send probes in parallel, rather than serially [Fyo04, VVZ02]. Further

parallelization can be achieved by using distributed scans [Ark05, VCI99]. Arkin presents

scanning techniques that reduce the amount of probe data needed for fingerprinting [Ark01].

Increasing scanning bandwidth, on the part of the attacker, can speed-up scans. However,

there is a risk of degrading network performance and dropping scan packets, which can cause

the scan to be detected or get incomplete information [Ark05, Fyo04, TB98].

To scan a large number of addresses quickly, it is advantageous for probes to use: a

small number of packets, small-sized packets, and packets that can be easily sent in parallel.

This makes simple host and port scans appealing, such as ICMP ping, and TCP SYN scans

[Fyo04]. In general, such fast scans will be vulnerable to Net-Chaff’s low-level

impersonations. Further, all scans that are not one-packet scan-and-attack probes do require

some response which can be delayed or made misleading, in order to provoke more dwell

time over an address.

Accuracy: For a particular type of scan, accuracy of the information that the scanner

receives back is affected by dropped packets, which can occur when the scan exceeds the

available bandwidth [Fyo04]. Another affect on scan accuracy is firewalls that intentionally

do not reply to scans [Rus02]. The lack of a reply has the same result as a dropped packet.

In addition, scanners can receive deceptive reply-packets that result in false positives and

false negatives. Honeypots can defend in this way, as well as individual hosts, through host-

firewalls and deceptive services such as Portsentry [Row06].

Flow-control is a challenging problem for scanners, and it can be used to the

defender’s advantage. The network capacity can vary unpredictably by time and location, so

for scans to be accurate, they typically need to be performed at a conservative rate [Fyo04].

The reduced scanning speeds will aid Net-Chaff’s containment process. Further, when Net-

 86

Chaff does not reply to scan packets, the scanner is likely to suspect dropped packets and

retransmit them, as nmap does [Fyo04].
18

 Such retransmissions will reduce the effective

scan rate.

Stealth: Scan stealth has to do with avoiding detection. One way that an NIDS

detects scans is by their distinctive traffic patterns, such as a high data volume, or a high flow

rate of probes [e.g., Gof02, Ras04, Zhe04]. Stealth techniques for scan traffic include:

scanning from multiple sources, slow scans, the selection of random addresses and ports

(serial sequences are easily detected), etc. [Ark99, Naz04, Fyo04, VCI99]. Scans can also be

hidden by exploiting specific NIDS weaknesses, many of which have to do with resource

limitations in monitoring high volumes of traffic [e.g., Gof02]. Examples include the use of

fragmented packets (if not reassembled, then scan signatures are hidden), slow scans (exceed

the detection timeframe), invalid packets (may not be logged, e.g., if out of order, or the

header is incorrect) and so on [Ark99, Fyo04].

Decoy scans attempt to hide the scan’s true source address by sending many copies of

the real scan packets, but with fake source addresses [Ark99, Fyo04]. One basic stealth

technique is to not generate high volumes of traffic that visibly impact normal network

operations [Fyo04, TB98, Zhe04]. Another form of stealth is scanning techniques that pass

through network filters such as firewalls [Ark99, MSK03]. One thing in common for all

stealth techniques listed here is that they have little, or no, effect against Net-Chaff’s

detection and containment capabilities.

4.1.3.1.3.3 Scanning techniques

This section discusses scanning techniques that are especially relevant for Net-Chaff.

Scan scope: Scans can be differentiated by their scope on the network [Naz04]. A

host scan is a scan of multiple services or protocols on a single host; for example a scan of all

“Well Known Ports” ports (1-1024) on a particular web server. A network scan is a scan of

one or more services on multiple hosts; for example a scan for web servers at all intranet

18

 See the nmap source code.

 87

addresses. Scanning many ports on a single machine can be very time consuming [Wol02].

Thus host scans tend to be used on specific computers that are of particular interest. On the

other hand, network scans would typically be used to survey the network for particular

vulnerabilities or assets. Net-Chaff is intended primarily for use against network scans, as

there is little reason for performing host scans against most Net-Chaff managed addresses.

Banner grabbing: The Net-Chaff null server can be configured to return no data, or

random data. In either case, if the scanner connects to the server, as with banner grabbing,

then the scanner can potentially detect the impersonation. However, the purpose of the Net-

Chaff null server is not to be believed at the application layer, but to slow down the scan.

Firewalking: Firewalking uses ICMP and traceroute-like packets to attempt to

discover computers behind a firewall, and to discover the firewall’s filtering rules [Ark99,

Ark01]. This scanning technique presents opportunities for Net-Chaff to use its low-level

impersonations to impersonate both a firewall and the hosts that lie behind it. This follows

one of the deception principles from chapter 3: an item that is expected to be hidden can

often be impersonated by providing simple indicators of its existence. Within the intranet,

Net-Chaff can impersonate internal firewalls, and even perimeter firewalls—to defend

against external scans that have penetrated the perimeter.

O/S fingerprinting: Operating system fingerprinting works largely by detecting

peculiarities in the operating system’s networking stack [Ark01, Bec01, Fyo02, WWJ03].

Probes are sent to elicit replies that are unique to particular operating systems. Two causes

for these unique replies are ambiguities in network protocol specifications and optional

features of protocols. Another cause of unique replies is protocol implementation errors.

Whereas Net-Chaff’s low-level impersonations are relatively easy to implement, accurately

impersonating a particular network stack’s idiosyncrasies could be extremely difficult. One

solution is for Net-Chaff to use real operating systems to generate replies to O/S

fingerprinting scans. This problem is left for future research.

Inverse mapping: Firewalls are often configured to hide computers by not replying

to disallowed packets. On the other hand, routers are configured, by default, to send ICMP

 88

messages in reply to undeliverable packets [Bar95]. When both of these conditions exist,

scanners can find hidden computers via probes for which there is no reply. This scan

technique is called inverse mapping [Ark01]. One way to prevent inverse mapping is to

configure routers so they do not send revealing ICMP messages. There is increasing appeal,

within intranets, to deliberately do this for security and to reduce unnecessary traffic. Net-

Chaff’s deceptions must take into account the network’s use of non-response for scan probes.

This problem is left for future research.

4.1.3.2 Performance objectives

This section describes Net-Chaff’s primary performance objectives: its tactical

objectives and its deception and hiding objectives. Net-Chaff defends against hackers’ active

scans. Net-Chaff’s tactics have to do with its interactions with hackers and their scans; these

tactics were described earlier, and examples include the techniques for scan detection and

containment. Net-Chaff’s tactical objectives are its specific goals for defending against

scans. For example, one goal of containment is to reduce scanner’s access to vulnerable

systems. An understanding of Net-Chaff’s tactical objectives is necessary for understanding

its design, evaluation and deployment.

Net-Chaff uses deception and hiding as a means to achieve its tactical objectives.

These uses of deception and hiding were described earlier, e.g., Net-Chaff’s low-level

impersonations. Also, deception and hiding are the focus of this dissertation. Net-Chaff’s

deception and hiding objectives are the specific goals for its uses of deception and hiding.

As an example, one objective of the low-level impersonations is to slow-down scans prior to

containment. An understanding of Net-Chaff’s deception and hiding objectives is necessary

for evaluating and employing these means for scan defense.

4.1.3.2.1 Tactical objectives

Net-Chaff’s tactical objectives fall into two categories:

• defending against scans, and

• defending Net-Chaff itself.

Net-Chaff’s objectives for defending against scans can be divided into three sub-

 89

categories:

• detecting and containing scans,

• thwarting hackers after containment, and

• obtaining information needed for incident response.

In detecting and containing scans, Net-Chaff’s ultimate objectives are to reduce the

scanner’s access to the network, and especially access to high-valued and vulnerable systems.

As will be shown in the next chapter, calculations can be made to estimate the number, and

types, of computers that scanners can access before containment.

There are three ways that Net-Chaff thwarts hackers after containment. First, Net-

Chaff’s impersonations can insert false positives within the hacker’s scan results, and thereby

reduce the usefulness of the information obtained. Secondly, if hackers later act on these

false positives, then the access can be detected by Net-Chaff. Thirdly, Net-Chaff provides

information needed for incident response, including the scan source and scan techniques

used. Net-Chaff obtains this information through detection and surveillance, and its

impersonations induce the scanner to send more information than it would otherwise to

unused addresses.

Net-Chaff’s objectives for defending itself can be divided into two sub-categories.

Net-Chaff must thwart hackers in their attempts to:

• hack the Net-Chaff systems themselves, including the Net-Chaff WAN and

LAN servers, and the router containment functions, and

• detect or circumvent Net-Chaff’s deceptions.

Preventing hacking of the Net-Chaff systems involves standard host and network

security-measures, including protection from denial-of-service (DoS) attacks. For instance,

both the detection and containment capabilities can potentially be degraded by packet floods.

However, Net-Chaff’s system security, and protection from DoS attacks, are not being

addressed by this research. This research does address defenses for thwarting hacker’s

attempts to detect or circumvent Net-Chaff’s deceptions, as discussed in the following

section.

 90

4.1.3.2.2 Deception and hiding objectives

This section discusses Net-Chaff’s deception and hiding objectives, as defined earlier.

Hiding includes both deceptive and non-deceptive hiding. Ultimately, deception and hiding

are used to achieve Net-Chaff’s tactical objectives.

Net-Chaff’s detection and containment functions rely upon a large number of unused

addresses. The unused addresses serve to hide real systems from the scanner. Even without

Net-Chaff and its deceptions, the unused addresses reduce the rate at which real computers

are probed (i.e., real computers per probe); we will refer to this effect as passive hiding

because it is independent of Net-Chaff. Assigning a large number of unused addresses to

Net-Chaff makes detection occur quickly, and it enables the impersonations to reduce the

scanners’ probe rate (i.e., probes per unit time). Net-Chaff’s active hiding techniques include

impersonation, detection, containment, and surveillance. The next chapter presents analytical

models that calculate the unused addresses’ contributions to Net-Chaff’s detection and

containment capabilities.

Deception planning was presented in chapter 3. In review, its key element is the

deception objective, which is the desired result of the deception operation; it consists of: 1)

the intended target action, and 2) the deception exploit, which explains how the target action

is used to advantage. The desired perception is what the target must believe in order for it to

take the intended action. The deception story is an outline of how the computer system will

be portrayed so as to cause the target to adopt the desired perception, and take the intended

action.

In deception-planning for Net-Chaff, a deception objective is needed for each of its

uses of deception. Table 4.1.3.2.2-1 lists Net-Chaff’s uses of deception for defending

against scans. Each row describes a particular use of deception. The first column states its

deception exploit. The deception exploit is described in terms of the tactical objectives that it

supports. The second column describes the target action that is to be exploited. The third

column gives an example deception (story) that is intended to induce the target action.

 91

Table 4.1.3.2.2-1 : Net-Chaff’s uses of deception for defending against scans

Deception Exploit Intended Target

Action

Example Deception (Story)

reduce the number of real

computers accessed

before containment

slow down the scan by

causing the scanner to

send extra packets or to

wait

low-level impersonations induce

scanners to send more data than

they would to unused addresses;

impersonations can use delays

to slow serial scans

detect scans quickly

(relative to the number of

addresses probed), and

detect scans accurately

cause the scanner to

send packets whose

signatures make

detection faster and

more reliable

acquire information

needed for incident

response

cause the scanner to

send packets that reveal

its: capabilities,

intentions, course of

action

low-level impersonations induce

scanners to send more

information than they would to

unused addresses

provide false positives

that reduce the usefulness

of the scan results and

thereby hide real systems

cause the scanner to

receive false positives

low-level impersonations

provide false positives for many

scan types

Another use of deception involves detecting attacks that occur after the scan. Even

when the scan is contained, the attacker may later access or attack the systems discovered by

the scan. By providing false positives, the attacker can be induced to later access addresses

where Net-Chaff provides impersonations. Net-Chaff can potentially detect and contain such

follow-on access. The knowledge gained from detecting the original scan can help in

detecting the follow-on access, and it can also provide lead-time for containing the follow-on

access.

 92

Net-Chaff’s tactical objectives include defending Net-Chaff itself, and deception is a

means for doing that. Specifically, deception is used to thwart hacker’s attempts to

prematurely discover:

• Net-Chaff impersonations, and

• unused portions of the network.

Deceptive hiding is used to prevent such discoveries. (This is a form of Net-Chaff’s

active hiding.) For instance, Net-Chaff uses low-level impersonations, and a scanner can

always discover such deceptions by connecting to the null server. However, making such

connections, for every Net-Chaff managed address, can be very time consuming. As a

countermeasure, hackers could find indicators that allow scanners to detect Net-Chaff

managed addresses, without connecting to every null server. For example, a routed intranet

is configured so that all used subnets have a gateway at host address 1 within the subnet.

Further, each gateway has UDP port 123 open for NTP (network time protocol). If the Net-

Chaff-managed subnets do not impersonate such a gateway at host address 1, then the entire

subnet can be detected as a fake, simply by probing port 123 at host address 1.

Net-Chaff must hide indicators that allow scanners to prematurely detect

impersonations and the unused portions of the network. We will refer to this as hiding Net-

Chaff. Deception is used to hide Net-Chaff, and the deception objective consists of: 1) the

target action is to not detect Net-Chaff impersonations prematurely, and 2) the deception

exploit is to allow Net-Chaff’s impersonations to work as intended, without being detected

prematurely. In fact, when it comes to using false positives to reduce the usefulness of

information-scan results, it is essential that the scanner does not recognize impersonations as

such before containment.

The scanner’s efforts to prematurely detect impersonations, and the unused portions

of the network, are referred to as Net-Chaff detection. The hiding model from Chapter 3 can

be used to understand how Net-Chaff can hide its impersonations. In general, to detect Net-

Chaff impersonations, the scanner will use the discovery process of investigation. The

hiding model explains how the scanner’s investigation process can be defeated in order to

hide Net-Chaff. The scanner cannot observe Net-Chaff directly, but it can potentially detect

 93

evidence of impersonations. Net-Chaff can hide by simply not creating the evidence that the

scanner needs for Net-Chaff detection. This is accomplished by making the low-level

impersonations adequately realistic. The degree of realism needed depends on the scanners’

detection capabilities, and also, cost-benefit constraints.

The hiding of impersonations limits the amount of impersonation that can be used.

For example, to slow down all possible port scans, a Net-Chaff-managed subnet can

impersonate servers at every address and every port. However, such impersonations could be

detected by simply pinging a port that real servers are unlikely to use, e.g., 50383. Thus,

hiding Net-Chaff-managed subnets requires that most ports be closed. This limits the use of

impersonation and its benefits in detecting and slowing-down scans.

From the above we see that Net-Chaff’s hiding objectives can conflict with its other

objectives. However, many scanners will not attempt to detect Net-Chaff, so a portion of the

Net-Chaff-managed addresses could use impersonation without regard to detection. For

instance, some Net-Chaff managed subnets could be “tar-pits” that are maximized for

slowing down scans, without regard to detection. These subnets can use low-level

impersonations extensively, and also, other delay tactics such as those used by LaBrea

[LaB05]. To defend against scanners that attempt to detect Net-Chaff, the intranet’s other

subnets can be optimized for hiding Net-Chaff.

4.1.4 Summary

Net-Chaff is intended for defending against hacker scans within a protected intranet,

e.g., inside a corporate network. This chapter described how Net-Chaff works. Net-Chaff’s

major functions are scan detection, scan containment and scan surveillance. Net-Chaff works

by monitoring an intranet’s unused addresses. It also impersonates computers at the unused

addresses, which can impede scanner’s progress and improve Net-Chaff’s defensive

effectiveness. Net-Chaff appears to provide substantial improvements over current scan

defenses, including a simple and effective means for monitoring the whole network and

detecting scans. The Net-Chaff design uses, for the most part, existing computer-security

components, but Net-Chaff combines and applies them in a novel way. This section also

 94

framed Net-Chaff’s requirements for scan defense. These requirements provide the basis for

the Net-Chaff analysis, which is presented in Chapter 5.

4.2 Honeyfiles: deceptive files for intrusion detection

The Honeyfiles system is described in a conference paper [YZD04]. The paper is in

the appendix.

 95

5 Evaluation

This chapter presents evaluations of the two deception process-models discussed in

previous chapters, within the context of the two novel intrusion detection systems: Net-

chaff, and Honeyfiles.

5.1 Net-Chaff

This section analyzes Net-Chaff’s performance, including its use of deception. This

analysis will be referred to as the Net-Chaff analysis, and it includes analytical and

simulation models of Net-Chaff’s performance. In addition, Net-Chaff is analyzed from the

perspective of the hiding model presented in chapter 3. The model is used to understand the

role of hiding in Net-Chaff’s functionality and performance. This section also includes

discussion of Net-Chaff’s limitations and Net-Chaff-related future research.

Net-Chaff’s performance objectives were presented in chapter 4, and they include its

tactical objectives and its deception and hiding objectives. The Net-Chaff analysis presented

here addresses a subset of these objectives. The performance objectives addressed are:

• reduction in the scanner’s access to the network being protected, and especially access

to high-valued and vulnerable systems on that network. Net-Chaff does this by detecting

and containing scans. The analytical models focus on calculating the number, and types,

of computers that scanners can access before containment. The primary metric is the

number of vulnerable computers accessed by the scanner, before the scan is contained.

• the use of deception and hiding to achieve Net-Chaff’s tactical objectives. The Net-

Chaff analysis focuses on Net-Chaff’s primary uses of deception and hiding. They

include: 1) the use of low-level deceptions, and large numbers of unused addresses, to

slow-down scans, and 2) the use of low-level deceptions to provide false positives that

reduce the usefulness of the scan results.

Net-Chaff can be used in many different contexts, each with varying security

objectives, network topologies, and scanning threats. This analysis models one such context

for Net-Chaff deployment, but the models are adaptable to other contexts. This context

 96

includes an enterprise network configuration and the three scan types described in chapter 4:

scan-and-attack, filtering scans, and information-retrieval scans.

The Net-Chaff analysis is presented in the following subsections. The analytical

models are presented first. The simulation is presented next, and it is used to verify the

analytical models. The hiding analysis is then presented. Net-Chaff’s limitations and future

research are also analyzed. A final section summarizes the findings from the Net-Chaff

analysis.

5.1.1 Analytical models

We next present the analytical models as they apply to Net-chaff’s performance, for

what this work considers typical networks and scans. The analytical models are based on the

scanners’ probe rates, so they are referred to as the rate-based models.

5.1.1.1 Definitions, assumptions, context and environment

This section presents assumptions and descriptive models that form the basis on

which the analytical models are constructed. The descriptive models build on the Net-Chaff

design and requirements presented in chapter 4.

5.1.1.1.1 Scanners

Scanner performance is modeled assuming a best-case, or very favorable,

environment for the attacker, in order to show worst-case outcomes for Net-Chaff.

Discussion here focuses on a single scanner rather than a group of scanners. Multiple

scanners are addressed in the next section.

A scanner is assumed to run on one attacking computer. The scanner uses one full-

duplex network connection. When the scanner sends or receives a packet, it does so at a

fixed rate, e.g., 1Mbps. This rate will be referred to as the scanner’s available bandwidth. It

is assumed the network link is symmetrical and operates in duplex mode, e.g., each direction

supports 1Mbps. It is assumed that the scanner can only send one packet at a time through its

network connection to the intranet under consideration.

 97

It is also assumed that the scanner sends probes and receives probe replies, and these

two tasks occur in parallel (duplex mode). The scanner probes random addresses on the

intranet. The three scanning techniques of interest here are scan-and-attack, filtering scan,

and information retrieval scan. We consider two random-selection techniques: sampling with

replacement and sampling without replacement. Scanners can use other techniques for

address selection, but this is left to future research.

The scanner’s rate is measured in probes-per-second. An average probe transmission

rate is calculated, based on the number of packets sent and the bandwidth used. Definitions

and models of the scan rates and probes are further described in section 5.1.1.1.3.

The network in which scanning takes place is assumed to have no packet drops (ideal

router queues, no media limitations, etc.). However, scan targets may intentionally drop

probe packets. Packet delays are assumed to be finite and within acceptable ranges for

normal network operations. To model latency, an average value for the network is specified.

As used here, latency is defined as being the duration of the one-way trip: the time from just

after a packet is transmitted to the time when the packet’s last bit arrives at the destination’s

network interface. Packet transmission times are a function of the packet size and the

bandwidth used by the scanner. Round trip times, e.g., for ICMP ping, include the

transmission times of the outgoing packet and its reply packet, and also the latency to and

from the target.

5.1.1.1.2 Net-Chaff

This section describes models of the Net-Chaff system, including its scan-defense

mechanisms, performance, and environment. In this model, the Net-Chaff detection

mechanism functions by counting probes. Scan detection (by Net-Chaff) occurs once a

certain number of probes have been received from the scanner. This number is called the

detection threshold. In practice, Net-Chaff can use additional probe detection mechanisms

that provide an improvement over this simple threshold-based mechanism. For example,

some scans can be very quickly identified by a unique fingerprint in their packet headers,

such as the absence of TCP flags in nmap’s Null scans [Fyo04]. The threshold-based

 98

detection model was chosen because it is simple, and it provides a worst-case view of Net-

Chaff.

From Net-Chaff’s perspective, the scan is a sequence of probes, ordered by the time

of their initial transmission. Figure 5.1.1.1.2-1 illustrates. Probe destinations are chosen

randomly, and probes can go to Net-Chaff-managed addresses or to real computers. Probes

can also go to unallocated addresses, which are not allocated to either real computers or to

Net-Chaff. It is assumed that the Net-Chaff WAN server receives packets in the order in

which their transmission started. This is an approximation, as in practice, the WAN server

receives packets sent directly from the scanner, and those forwarded from the Net-Chaff

LAN servers. Also, in practice, the packets’ ordering can be changed, and packets dropped,

due to routing, possibly over multiple paths.

p1, p2, p3, . . . pi, . . . pn, pn+1

detection containment

blocking time

time

Figure 5.1.1.1.2-1 : Scan probes, from Net-Chaff's perspective

Let the detection threshold be z packets, and let probe pi be the z
th

 probe sent to a

Net-Chaff-managed address (z <= i). In the figure, detection occurs when probe pi arrives at

the Net-Chaff WAN server. Once Net-Chaff detects the scan, it then initiates containment.

The time from detection to when containment goes into effect will be called the blocking

time (b). From the figure, n probes will have been sent at the point of containment.

However, at this point, any probes that are in progress (“in flight”) will not be completed.

Consequently, the number of completed probes will be less than or equal to n.

 99

The Net-Chaff analysis focuses on an individual scanner. It is assumed that this

scanner uses a single source-address. Multiple scanners can be modeled by repeated

application and interleaving of the model of an individual scanner. For each intranet subnet,

and for the Internet gateway, containment will be initiated by the first scan that is detected

there. When a scanner uses multiple source addresses, the scan will appear to Net-Chaff as

multiple scanners.
19

 When Net-Chaff detects multiple scanners, it could lower its detection

threshold, to better counter the threat. The analysis of Net-Chaff’s interactions with multiple

scanners is left for future research.

The following variables are used in this context. Of course, the true averages, or

mean values, are limits that are achieved as the number of network scans approaches infinity.

In practice all averages will be estimates of the mean value.

C̄ the average number of probes that a scan completes prior to containment

Ci¯ ¯ the average number of probes that a scan completes prior to containment, and

that have a probe response of type i. Probe-response types are discussed in the

next section.

Two important outcome variables are:

C̄VULN the average number of vulnerable computers that a scan accesses, prior to

containment

C̄AFF the average number of computers that respond affirmatively to the scan,

prior to containment; it is used for analysis of the information-retrieval

scan.

5.1.1.1.3 Probes

Analytical models shown here are for: a) the UDP and TCP scan-and-attacks, b) a

filtering scan with the UDP scan-and-attack, and c) an information retrieval scan that uses

ICMP ping (see chapter 4 for scan descriptions). These specific examples are used to

19

 As described in chapter 4, the Net-Chaff design assumes that intranet routers drop packets from a directly

attached subnet if the packet’s source address is not from that subnet.

 100

illustrate scan outcomes. The analytical models can be adapted to other scan types.

Scan probes are modeled for the purpose of calculating scan outcomes at the point of

containment. Probes are categorized according to the type of probe response that is received.

The categories are referred to as probe-response types. Table 5.1.1.1.3-1 lists the probe-

response types used in the analytical models, for the servers that are being probed, e.g., web

servers. The category “no server present” refers to the responses received when there is no

server at the address being probed. For this model, it is assumed that the response is an

ICMP message, such as “host unreachable” or “port unreachable”. The categories in Table

5.1.1.1.3-1 are for analyzing Net-Chaff’s effects on scans. Additional probe categories can

be used to analyze affects from additional deception sources, such as honeypots, and

firewalls. These additional categories, and their analyses, are discussed in section 5.1.1.5.

Table 5.1.1.1.3-1 : Probe-response types

Responder Probe-Response Type Symbol Used in Models

server impersonation nc_imp

Net-Chaff no server present, e.g., ICMP “host

unreachable” message

nc_ns

secure server sec

vulnerable server vuln
real computer

no server present, e.g., ICMP “host

unreachable” message

ns

Net-Chaff analysis is performed for a particular type of scan and a particular network

configuration. The network configuration includes specification of the probe-response types’

distribution on the network. For each probe-response type, the number of addresses that

respond in that way are specified. The location of those addresses is not relevant in this

 101

analysis because the scanner chooses addresses randomly.

Probe transmission is modeled by calculating a probe rate for each probe-response

type. The rate is in probes per second. The rate is an estimate, and it is calculated differently

for serial and parallel probe transmission (see discussion below). These calculations are

described here, using the example TCP scan-and-attack from chapter 4.

For a serial scan, the scanner processes one probe at a time, and a new probe is started

immediately after a probe ends. A probe ends once it has finished the latter of: sending its

final probe packet, or receiving its final probe response. The probe completion time is the

amount of time it takes to complete a probe, and it is the difference between the probe’s start

and end times. For a particular probe-response type, it is assumed that all probes have the

same probe completion time. The time to process a single probe can be calculated based on:

the transmission time
20

 for the probe packets and their replies, the order in which packets are

sent, latency, and any delays at the scanner and at the probe destination. More detailed

probe-rate calculations are provided with the analytical models.

The serial transmission of probes, for the scan-and-attack example, is illustrated in

Figure 5.1.1.1.3-1. For the first probe, transmission of its first packet begins at time t1. The

probe is completed when transmission of its last packet ends, at time t2. The probe

completion time is (t2-t1). Also, at time t2, transmission begins for the second probe’s first

packet. Due to network latency, the first probe’s last packet will arrive at the server after t2.

For scan-and-attack probes that are sent serially to an accessible server, the probe rate can be

estimated as 1/(t2-t1) probes-per-second. When a serial scan is contained, the number of

probes that are in progress is at most one. For probes to Net-Chaff, it can use delays to

reduce the effective probe rate, though the scanner can have time-out mechanisms that limit

the affects of Net-Chaff’s probe delays.

20

 The transmission time is based on the packet size and the bandwidth used by the scanner.

 102

Scanner Server

time

probe #2

completed,

and probe #3

started: t3

probe #1

started: t1

Scanner Server

time

probe #2

completed: t4

probe #1

started: t1

Serial Parallel

legend:

probe 1 packets:

probe 2 packets:

probe #1

completed,

and probe #2

started: t2

Figure 5.1.1.1.3-1 : TCP scan-and-attack probes, using serial (non-interleaved) and

parallel (interleaved) transmission

For most probe-response types, the scanner can interleave its processing of probes to

increase its effective throughput. This increased throughput is achieved without increasing

the scanner’s available bandwidth. In particular, when processing a probe, the time spent

waiting for replies can be used to send packets for other probes. This will be referred to as a

parallel scan. The scan is parallel in the sense that the scanner interleaves its processing of

two or more probes. As stated earlier, the scanner model assumes that probe packets

themselves are sent one at a time (so strictly speaking, from the packet perspective, both

serial and parallel scans are packet-serial). It is assumed that probe reply packets are

received and processed in parallel with the sending of probe packets.

The fully parallel scan constantly sends packets. To ensure probe completion, it only

starts a new probe when there are no packets to be sent for partially-completed probes.

 103

When there are packets to be sent for more than one partially-completed probe, then packets

for the oldest probe are sent first. For the Net-Chaff analysis involving parallel scans, fully

parallel scans will be modeled, as they provide upper-bound estimates of scanning rates.

The interleaving of probe processing, for the scan-and-attack example, is illustrated in

Figure 5.1.1.1.3-1. Two probes are interleaved. For the first probe, transmission of its first

packet begins at time t1. The second probe is completed when transmission of its last packet

ends, at time t3. For scan-and-attack probes that are sent in parallel to an accessible server,

an estimate of the probe rate is 2/(t3-t1) probes-per-second. This assumes all probes conform

to this duration.

When a parallel scan is contained, the number of probes in progress would be, at

most, the maximum number that are interleaved. For probes to Net-Chaff, Net-Chaff can use

delays to increase the number of interleaved probes, though the scanner can have time-out

mechanisms that limit the effects of Net-Chaff’s probe delay. For a fully parallel scan, Net-

Chaff’s delays will not alter the probe rate.

5.1.1.2 Rate-based models

This section presents the analytical models that were developed for the Net-Chaff

analysis. They are referred to as the rate-based models. The models are based on three

characteristics of the Net-Chaff environment: 1) the probe rates for each of the probe-

response types, 2) the ratios of the probe-response types on the network, and 3) the

scanner’s use of random address selection.

5.1.1.2.1 Average probe-rate

The rate-based models calculate scan outcomes based on the average network probe

rate (x̄). It is an estimate of the scanner’s probe rate for the network, and it is measured in

probes per unit time (the unit used here is seconds). The average is over the probe rates for

all probe-response types. The rate is estimated for a particular type of scan and a particular

network configuration. This section explains how x̄ is calculated, and it continues the

discussion of probe rates from section 5.1.1.1.3.

 104

Regarding notation, single variables that appear within paragraphs are in bold font

style, to avoid being overlooked. Variables within equations will be represented in regular

font style, i.e., not bold. This includes equations within paragraphs and those on a separate

line. A variable that appears in bold in one place, and regular font-style in another place, is

the same variable.

The equation for calculating the average network probe rate (x̄) is presented in top-

down fashion. The high-level equation is presented first, and then its components are

developed. To begin, some notation and terms are needed. The set of probe-response types

is defined as S, and i is a particular probe response type (i is an element of S). Let xi be the

probe rate for i, expressed in probes per second. xi will be referred to as an individual probe

rate as it is the rate for an individual probe-response type.

Let a scan be defined as a scanner’s probes of n randomly-selected addresses, where

(n ≥ 1). When the scanner selects addresses without replacement, the n probes will not

contain duplicate addresses. Also, the maximum value for n is NT. When selecting with

replacement, then the n probes can contain duplicate addresses. In this case, there is no

maximum value for n. These scan attributes apply to all equations that calculate probe rates

and numbers of probes, e.g., Ci¯ ¯ (section 5.1.1.1.2).

Within a scan’s n addresses, let ni be the number of addresses with probe-response

type i. Let ri be the ratio of probes with probe response type i, in the scan:

ri = ni / n (1)

∑
∈

=
S i

i 1r (2)

The derivation of x̄ can be more easily shown by first deriving the average network

probe rate for an arbitrary scan of n probes. This is represented as x#¯ ¯ , and it is simply the

average over the probe rates for the probe-response types.

 105

x#¯ ¯ is calculated based on the xi rates, and the ri ratios. In the computer performance-

modeling literature, it is shown that the weighted harmonic mean can be used to calculate an

average rate for a set of time-based rates that occur disproportionately [Jai91, Smi88]. The

rates are represented as an amount per unit-time, e.g., probes per second. The rates occur

disproportionately in that they occur for different amounts. For example, each xi applies to ni

probes, and each of the ni values can be different.

Equation (3) shows the weighted harmonic mean calculation, for x#¯ ¯ . The average is

over the probe rates for the probe-response types. The weights are the ri values. They sum

to 1, and each ri represents the fraction of the scan’s probes that are performed at rate xi.

Smith notes that the equation for the weighted harmonic mean may lack intuitive

appeal [Smi88]. He shows that it is equivalent to taking the total amount and dividing it by

the total time, e.g., n probes divided by the total time it takes to complete the n probes. This

equivalent form can be derived from equation (3). Let tpi be the probe-completion time for

probe-response type i, then tpi is the inverse of xi, as shown in equation (4). Equation (5) is

derived by multiplying the right-hand side of equation (3) by (n / n), and by using equations

(1) and (4). Equation (5) is n probes divided by the total time it takes to complete the n

probes, and it is equivalent to equation (3).

∑
∈

=

Si

ii xr
x

/

1#

 (3)

tpi = 1 / xi (4)

∑
∈

∗
=

Si

pii tn

n
x#

 (5)

Next, the average network probe rate x̄ is developed, based on equation (3). Again,

 106

the average is over the probe rates for the probe-response types. Techniques for calculating ri

and xi are presented next. The parameters for calculating ri include:

NT total number of addresses on the network

Ni number of network addresses that return probe-response type i (i.e., one of the

types listed in Table 5.1.1.1.3-1)

j an index for scans, i.e., scan 1, scan 2, ... scan j

nsj the number of probes in scan j

nsji the number of probes in scan j, with probe-response type i

The average value for ri can be calculated, and it is represented as r̄i. Its derivation is

shown below. As described earlier, the scanner randomly chooses n addresses, and ni of

them are of probe-response type i. As defined in equation (1), ri is (ni/n). Thus, the average

value of ri can be calculated as the expected value: E(ni/n). In probability theory, the value

(ni/n) is called the proportion of successes, and the calculation of its expected value, E(ni/n),

is shown in the equation (6) [HMG03]. In equation (7), E(ni) is the expected number of

responses with probe-response type i. When the scanner chooses addresses with

replacement, E(ni) is the expected value for a binomial distribution, which is (n*(Ni/NT)).

When the scanner chooses addresses without replacement, E(ni) is the expected value for a

hypergeometric distribution, which is also (n*(Ni/NT)). Since r̄i is an expected value, it is the

average achieved in the limit, over an infinite number of scans.

 107

r̄i can be used to calculate x̄ as shown in equations (9) and (10). This x̄ is based on r̄i,

so it too is an average that is achieved in the limit, over an infinite number of scans.

∑
∈

=

Si

ii xr
x

/

1
 —from (3) (9)

∑
∈

=

Si

ii

T

xN

N
x

/ —from (8) and (9) (10)

Equation (10) is a model of the average network probe rate, and its purpose is to

provide an estimate of scan outcomes. The model uses a single number to represent each

individual probe rate (xi). However, when scanning a real network, an individual probe rate

(xi) can vary, depending on the behavior of the probe recipients and their network paths. For

instance, there can be variations in processor delays and network latencies. What is needed

for xi is an estimate that is representative of the probe rate over the network. The two

measures of rate that are used here are maximum and average rates, though other measures

could be used, such as a median rate. The individual probe rates (xi) are calculated

)(
1

i
i

i nE
nn

n
Er =

=

(6)

=

T

i
i

N

N
nnE)(

(7)

T

i
i

N

N
r =

(8)

 108

differently for serial and parallel scans, as explained in the following subsections.

5.1.1.2.1.1 Serial scans

This section shows how the individual probe rates can be estimated for serial scans.

The TCP scan-and-attack was described in chapter 4, and in section 5.1.1.1.3 of the present

chapter. The calculation of one of its individual probe rates is shown as an example. The

scan’s individual probe rates depend on whether there is a server at the probed address.

When there is no server, the probe sends the initial packet for TCP OPEN, and the response

is an ICMP reply. From Table 5.1.1.1.3-1, this applies to the probe-response types nc_ns and

ns. When there is a server at the probed address, the packet exchange will be as shown in

chapter 4. From Table 5.1.1.1.3-1, this applies to the probe-response types nc_imp, sec, and

vuln.

The probe rate will be shown for probes to Net-Chaff-managed addresses, where the

probe response is an ICMP reply (i.e., probe-response type nc_ns). A serial scan is assumed.

The probe completion time is the amount of time it takes to complete a probe (defined in

section 5.1.1.1.3), and in this case it consists of:

1) time for scanner to transmit initial packet for TCP OPEN +

2) latency from scanner to Net-Chaff server (WAN or LAN) +

3) intentional delay by the Net-Chaff server, if any +

4) time for Net-Chaff server to transmit reply packet +

5) latency between Net-Chaff server and scanner

The probe completion time is the sum of list-items 1 to 5, above. Not included in the

list is the internal processing conducted on the scanner and server hosts. This processing is

assumed to be negligible. It is also assumed that the probes to the Net-Chaff WAN and LAN

servers take the same amount of time, i.e., list-items 2 to 5 are the same. If they did not take

the same amount of time, then each server would need a different probe-response type (e.g.,

nc_ns_WAN and nc_ns_LAN).

An average individual probe rate (x̄i) can be estimated. The parameters needed are:

Ai the set of addresses on the network with probe-response type i

 109

q an address in the set Ai, i.e., iAq ∈

tq the probe completion time (defined in section 5.1.1.1.3) for address q

xq the probe rate for address q. It is equal to (1 / tq).

x̄i is an average rate that is achieved when randomly probing addresses in Ai. In such

cases, each of the addresses in Ai is equally likely to be probed, and the likelihood is (1 /

|Ai|). The weighted harmonic mean can be used to calculate x̄i, as shown in equations (11)

and (12). The weights are (1 / |Ai|), and they are the same for each address in Ai.
21

Nominally, the weights are realized in the limit, i.e., an infinite number of random probes to

addresses with probe-response type i. Consequently, the equations for x̄i are realized in the

limit, for an infinite number of scans.

In addition, an upper-bound for xi can be calculated as (1 / min(tq)). The term min(tq)

is the minimum value of tq, among all q in Ai.

For a serial scan, the individual probe rates can be calculated independently of each

other. For a scan of n probes, the probe response types are not all of the same type.

21

 When the weights are all the same, the weighted harmonic mean is the same as the harmonic mean. The

weighted harmonic mean is used here to illustrate the role of the limit, for the weights.

∑
∈

=

iAq q

i

i

x

A
x

)1(

1

 (11)

∑
∈

=

iAq

q

i

i

t

A
x

 —by simplifying (11) (12)

 110

However, for a serial scan, the individual probe rates (x̄i) are not affected when the probes

responses are of different types. The reason is that, for any given probe, its probe completion

time only depends on its response type. The completion time is independent of the probe-

response types of all prior and subsequent probes. (The context for this probe behavior is the

Net-Chaff analysis’ network model.)

5.1.1.2.1.2 Parallel scans

This section shows how the individual probe rates can be estimated for parallel scans.

Each individual probe rate (xi) is calculated as a maximum rate for a fully parallel scan, and

it is represented as xmax_i. Fully parallel scans were described in section 5.1.1.1.3

An estimate is made for the maximum possible rate (xmax_i), and it is based on the

bandwidth used by the scanner. The parameters used are:

W scanner bandwidth in bits per second (bps)

Yi the total number of bytes the scanner sends for a probe with response type i

xmax_i is estimated as:

xmax_i = W / (Yi * 8) (13)

It is assumed that the scanner receives probe-responses in parallel with probe

transmission. Also, it is assumed that Yi is greater than or equal to the number of bytes the

scanner receives for a probe with response type i. xmax_i is not affected by the probe

completion time (defined in section 5.1.1.1.3). However, lengthening the probe completion

time will increase the maximum number of probes that are “in progress” (i.e., partially

completed) at a given time.

For a fully parallel scan, the individual probe rates can be calculated independently of

 111

each other. For a scan of n probes, the probe response types are not all of the same type.

However, for a fully parallel scan, it will be assumed that the individual probe rates (xmax_i)

are not changed when the probe responses are of different types. The individual probe rates

are the maximum possible, based on available bandwidth; therefore, the individual probe

rates could not increase when the probes responses are of different types. To calculate a

best-case for x̄, the individual probe rates are assumed to not decrease.

5.1.1.2.2 Containment time

Most of the Net-Chaff analysis is concerned with scan outcomes, at the point of

containment (as defined in section 5.1.1.1.2) This requires calculation of the containment

time, as a function of the detection threshold and the blocking time, as will be shown here.

The time it takes for the detection threshold to be reached is calculated first. The

variables and parameters include:

z the detection threshold, as defined in section 5.1.1.1.2

NNC the total number of addresses that are managed by Net-Chaff

r̄nc r̄i for probes sent to Net-Chaff managed addresses. Using equation (8), it is

calculated as (NNC/ NT).

A scanner randomly probes a network that is protected by Net-Chaff. Eventually, a

probe is sent that arrives at a Net-Chaff server and causes the detection threshold to be met.

Let nZ be the number of probes up to, and including, the probe that causes the detection

threshold to be met. Let n̄Z be the average value of nZ that is achieved in the limit, over an

infinite number of scans. An estimate for n̄Z is:

n̄Z = z / r̄nc (14)

This calculation is an upper bound as it includes some probes after the z
th

 probe sent

 112

to Net-Chaff. However, the number of these probes is less than (1 / r̄nc), which is typically

less than 2. Also, this calculation assumes that probes arrive, at the Net-Chaff WAN server,

in the order that the scanner sends them. In practice, probes may not arrive in this order, as

they can be sent directly, or forwarded from a Net-Chaff LAN server. An adjustment for this

will be made in the next set of equations.

Let tnz be the amount of time it takes the scanner to complete n̄Z probes, at the

average network probe rate (x̄). tnz is calculated by equation (16).

n̄Z = tnz * x̄ (15)

tnz = [z / (r̄nc * x̄)] —from (14) and (15) (16)

Let d̄ be the average detection time. tnz can be used as an upper bound for the

average scan detection time d̄, as scan detection will typically occur before tnz. For instance,

Net-Chaff can detect a probe upon receipt of the probe’s first packet, but the probe could

complete later, and even much later when there are multi-packet probes and large latency.

d̄ can be estimated as shown in equation (17). Since d̄ is a function of n̄Z and x̄, it is

an average that is achieved in the limit, as the number of scans approaches infinity. When the

difference between d̄ and tnz is significant, the average difference (λ) can be estimated and

subtracted from tnz. λ can also include an adjustment for probes that arrive out-of-order at

the Net-Chaff WAN server, as described for equation (14). λ is an average over an infinite

number of scans. For the Net-Chaff analysis, we will assume λ is zero.

d̄ = [z / (r̄nc * x̄)] - λ —from (16) (17)

Now, the average containment time (c̄) can be calculated. It involves the blocking

time, which is assumed to be a constant here. In practice, a worst case or average value

 113

could be used. Since c̄ is a function of d̄, it is an average over an infinite number of scans.

b the blocking time, as described in section 5.1.1.1.2

c̄ = d̄ + b —by definition of containment time, and from (17) (18)

When the scanner selects addresses without replacement, the maximum number of

probes is the network size (NT). Also, the maximum containment time is the time it takes to

probe the whole network. When the scanner selects addresses with replacement, there is no

limit to the number of probes, as any address can be selected multiple times. The time it

takes to probe NT addresses, on average, is represented as t̄_NT, and it can be calculated as

shown in (19). The average is over an infinite number of scans.

t̄ _NT = NT / x̄ —from definition of rate (19)

5.1.1.2.3 Primary performance model

As described in section 5.1.1.1.2, most of the calculations for the Net-Chaff analysis

are based on the following values:

C̄ the average number of probes that a scan completes prior to containment

Ci¯ ¯ the average number of probes that a scan completes prior to containment, and that

have a probe response of type i.

These values can now be estimated as shown below. Since they are based on c̄, x̄ and

r̄i, the averages are achieved in the limit, as the number of scans approaches infinity. There

can be partially completed probes at the point of containment. For a serial scan, there is at

most one. For a fully parallel scan, they are the probes that are currently “in progress”. In

 114

the equations, ε is an estimate of the average number of partially completed probes. The

average is over an infinite number of scans. For the Net-Chaff analysis, we will assume ε is

zero, to calculate best-case outcomes for the scanner.

C̄ = (x̄ * c̄) - ε —from (10) and (20)

Ci¯ ¯ = r̄ i * ((x̄ * c̄) - ε) —from (8) and (20) (21)

5.1.1.2.4 Network and scan models

We next discuss Net-Chaff performance for representative networks and scanners. A

template for network and scanner configurations is used, and it’s described here. Also, there

are several default configurations that are used in the performance analysis, and they too are

described here.

Table 5.1.1.2.4-1 shows the template for the network’s distribution of real computers

and Net-Chaff-managed addresses. Under the column Symbol, Ni represents the total number

of addresses on the network, of type i. Default configurations are shown for class A and B

networks. They will be referred to as the default class A network and the default class B

network, respectively. These configurations represent large corporate networks with 20K

addresses assigned to real computers. The unassigned addresses are those that are not

assigned to real computers nor Net-Chaff.

 115

Table 5.1.1.2.4-1 : Computer distribution on network

Computer Distribution

on Network

Symbol Default

Class A

Network

Default

Class B

Network

total network addresses NT 2
24

 2
16

addresses assigned to real computers NR 20K 20K

unassigned addresses NUN 5K 5K

addresses assigned to Net-Chaff NNC 2
24

 – 25K 2
16

 – 25K

Table 5.1.1.2.4-2 shows the template for the distribution of probe-response types on

the network. Default configurations are shown for a scan whose target is web servers. The

probe-response type distributions are shown as percentages of the computer distributions

shown in Table 5.1.1.2.4-1. Here, among the Net-Chaff-managed addresses, 5% are web-

servers. Among the real computers, 1% are secure web-servers, and in addition, 1% are

vulnerable web-servers.

Table 5.1.1.2.4-2 : Probe-response type distribution on network

Probe-Response Type Symbol Default Network Distribution

for a Web-Server Scan

server impersonation nc_imp)N * (0.05N NCnc_imp =
Net-Chaff

no server present nc_ns Nnc_ns = NNC – Nnc_imp

secure server sec)N * (0.01N Rsec =

vulnerable server vuln)N * (0.01N Rvuln =
real

computers

no server present ns Nns = NR + NUN – Nsec – Nvuln

 116

Probe rates are calculated as a function of the transmission bandwidth used by the

scanner and the packets sent. The probe rates are also a function of the average latency over

the network. (Latency was defined in section 5.1.1.1.1.) Delays and host-processing times at

the scanner and its targets are assumed to be zero, for simplicity, and to model worst case

outcomes for Net-Chaff. Probe-rate calculations are specified below, for the scan examples

presented earlier. Table 5.1.1.2.4-3 lists the parameters that are used.

Table 5.1.1.2.4-3 : Parameters for probe rate calculations

W bandwidth used by scanner and targets, in bits per second (bps)

L average latency, in seconds. It is assumed to be the same, to and from the scanner.

Si total size of a packet of type i (e.g., a packet used in TCP OPEN), in bytes. The size

includes network layers from Ethernet and above

Calculations for individual probe rates, for TCP scan-and-attack, are shown in Table

5.1.1.2.4-4 and Table 5.1.1.2.4-5, and example calculations are given. The calculations were

explained in section 5.1.1.2.1.

Table 5.1.1.2.4-4 : Packets used in TCP scan-and-attack

ST size of each TCP OPEN packet: 64 bytes

SI size of ICMP packet indicating the target is unreachable: 64 bytes

SB for TCP scan-and-attack, size of packet holding server’s 40-byte banner: 98 bytes

SA for TCP scan-and-attack, size of packet holding 400 byte attack payload: 458 bytes

 117

Table 5.1.1.2.4-5 : Calculations for individual probe rates, for TCP scan-and-attack

Transmission

Type

Probe

Target

Individual Probe-Rate

Calculations

Example

Calculations

W = 1Mbps,

L = 0.001

no server 1 / ([(ST + SI) / (W/8)] + [2 * L]) 330.7
serial

server 1 / ([(3*ST + SB + SA) / (W/8)] + [4 * L]) 100.2

no server (W/8) / ST 1953.1
fully parallel

server (W/8) / (2*ST + SA) 213.3

For the information-retrieval scan, a web-server TCP ping-scan will be modeled.

Table 5.1.1.2.4-6 shows the calculations for the individual probe rates. The scan’s probes

just test for an accessible web server. For each probe, the scanner sends the first packet from

TCP OPEN. If the destination is an accessible web server, it will reply with the second TCP

OPEN packet. All other destinations are assumed to send an ICMP packet in reply. For

simplicity, it’s assumed that all probe packets, and replies, are the same size.

Table 5.1.1.2.4-6 : Calculations for individual probe rates, for the web-server TCP ping-

scan

Transmission

Type

Individual Probe-Rate

Calculations

Example Calculations

W = 1Mbps, L = 0.001

serial 1 / ([(2 * ST) / (W/8)] + [2 * L]) 330.7

fully parallel (W/8) / ST 1953.1

 118

For the UDP scan-and-attack, the individual probe-rate calculation is simple, as the

rate is the same for all addresses. It is shown in Table 5.1.1.2.4-7. The packet size is:

SUA size of each UPD attack packet: 458 bytes

Table 5.1.1.2.4-7 : Calculation for individual probe rate, for the UDP scan-and-attack

Individual Probe-Rate

Calculation

Example Calculation

W = 1Mbps, L = 0.001

(W/8) / SUA 272.9

The UDP scan-and-attack can potentially be sped-up by using a filtering scan, as was

described in chapter 4. The present section’s network templates and default configurations

are applicable to this scan. The individual probe-rate calculations are shown in Table

5.1.1.2.4-8. The filtering scan sends zero-byte UDP probe packets. Addresses without a

server will result in a probe response that is an ICMP message. Addresses with a web-server

result in a UDP probe-response packet. For simplicity, it’s assumed that all of the filtering

scan’s packets are the same size:

SUF size of UDP filtering-scan’s packets: 64 bytes

 119

Table 5.1.1.2.4-8 : Calculations for individual probe rates, for the UDP filtering-scan

with an attack

Transmission

Type

Probe

Target

Individual Probe-Rate

Calculations

Example

Calculations

W = 1Mbps,

L = 0.001

no server 1 / ([(2 * SUF) / (W/8)] + [2 * L]) 330.7
serial

server 1 / ([(2*SUF + SUA) / (W/8)] + [2 * L]) 149.5

no server (W/8) / SUF 1953.1

fully parallel
server (W/8) / (SUF + SUA) 239.5

5.1.1.3 Performance overview

This section provides an overview of Net-Chaff’s performance. This analysis focuses

on Net-Chaff’s ability to reduce scanners’ access to vulnerable computers. Each of the three

scan types is analyzed. The rate-based models are used to estimate the average number of

vulnerable computers accessed by the scans. This value is represented by C̄VULN, as defined

in section 5.1.1.1.2 (page 97). Further, this analysis is based on the network configurations

specified in the prior section (5.1.1.2.4), including the default network configurations

specified in Table 5.1.1.2.4-1 (page 115), and the probe-response types specified in Table

5.1.1.2.4-2 (page 115). The networks’ vulnerable computers have probe-response type vuln.

C̄VULN can be calculated as a function of the average containment time (c̄). The

function is represented as C̄VULN(c̄). It is shown below, and the dependent variable (c̄) is in

bold, for clarity.

C̄VULN(c̄) = c̄ * (r̄vuln * x̄) —from (21), with ε assumed to be zero (22)

 120

C̄VULN(c̄) is a linear equation with slope (r̄vuln * x̄) and y-intercept 0. x̄ is calculated

for each scan type, as described in Table 5.1.1.2.4-3 (page 116) through Table 5.1.1.2.4-8

(page 119). The term (r̄vuln * x̄) gives the average rate at which vulnerable computers are

accessed by the scan. The rate is in units of vulnerable computers per second, and the average

is over an infinite number of scans.

The next subsection shows Net-Chaff’s performance for each of the three scan types.

The subsequent subsection presents a model for calculating the likelihood that one or more

computers are compromised, for a given value of C̄VULN.

5.1.1.3.1 Analysis of the scan types

The performance of the TCP scan-and-attack, for the default network configurations,

is shown in Table 5.1.1.3.1-1. The serial and parallel transmission types are shown. The

parallel scan is fully parallel, as defined in section 5.1.1.1.3. Also, three different scanning

bandwidths are shown: 1Kbps represents a slow scan; 1Mbps is a relatively fast scan, and

1Gbps provides a practical upper-bound. The column heading (r̄vuln * x) represents (r̄vuln * x̄),

and the bar over the x is omitted due to type-setting limitations. Similarly, the column

heading t_NT represents t̄_NT. The column t̄_NT is the average time it takes to scan NT

addresses, and it is calculated using equation (19). Also, this is the average time it takes to

scan the whole network when selecting addresses without replacement. These table-heading

definitions apply to the following tables as well.

Table 5.1.1.3.1-1 shows that the rates of compromise (r̄vuln * x̄) are directly

proportional to the bandwidth, for the fully parallel scans, e.g., the rate of compromise at

1Mbps is 1,000 times the rate at 1Kbps. This property does not hold for serial scans as they

are also governed by the network latency. The rate of compromise is high for the parallel

scan at 1Gbps on a class B network, and the rate is relatively low for the other scenarios.

 121

Table 5.1.1.3.1-1 : Rates of compromise (computers per second) for the TCP scan-and-

attack

rvuln * x t_NT rvuln * x t_NT rvuln * x t_NT

serial 0.00252 79277.7 0.930 215.1 1.471 136.0

parallel 0.00458 43685.4 4.578 43.7 4578.188 0.04

serial 0.00001 21371629.2 0.004 56566.9 0.006 35251.8

parallel 0.00002 12089464.4 0.017 12089.5 16.543 12.1

B

A

1Kbps 1Mbps 1Gbpsnetwork

class

trans.

type

Outcomes for the TCP scan-and-attack, at 1Mbps and 100Mbps are shown in Figure

5.1.1.3.1-1 and Figure 5.1.1.3.1-2, respectively. Their y-axis is in log scale. (In Figure

5.1.1.3.1-2, the two middle lines are very close to one another, but they are not identical.)

These outcomes indicate that Net-Chaff has the potential for stopping worms from spreading.

This requires that the average number of compromised computers (C̄VULN) be less than one.

For the class A network, the requisite containment times appear achievable. It’s not clear

whether containment could occur quickly enough for the class B network, with fully parallel

scanning at, or above, 100Mbps. At 100Mbps, for C̄VULN to be less than one, the containment

time must be less than 0.001 seconds, which may not be achievable in practice. One solution

is to allocate computers only the bandwidth they need, e.g., by using rate-limiting routers.

Typically, most computers need less than 100Mbps. Also, further research is needed to learn

the specific containment speeds that are possible with the current network technology.

 122

TCP Scan-and-Attack at 1 Mbps

Cvuln(c): Average Number of Servers Compromised,

as a Function of the Average Containment Time

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

average containment time (seconds)

a
v
e

ra
g
e
 n

u
m

b
e
r

o
f

s
e

rv
e
rs

 c
o
m

p
ro

m
is

e
d

(l
o
g
 s

c
a
le

)

class B - parallel scan

class B - serial scan

class A - parallel scan

class A - serial scan

Figure 5.1.1.3.1-1 : TCP scan-and-attack at 1Mbps

TCP Scan-and-Attack at 100 Mbps

Cvuln(c): Average Number of Servers Compromised,

as a Function of the AverageContainment Time

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

100.0000

1000.0000

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

average containment time (seconds)

a
v
e

ra
g

e
 n

u
m

b
e

r
o

f
s
e

rv
e

rs
 c

o
m

p
ro

m
is

e
d

(l
o

g
 s

c
a

le
)

class B - parallel scan

class B - serial scan

class A - parallel scan

class A - serial scan

Figure 5.1.1.3.1-2 : TCP scan-and-attack at 100 Mbps

 123

The performance of the UDP scan-and-attack, with a filtering-scan, is shown in Table

5.1.1.3.1-2. Rates of compromise are shown for the UDP scan-and-attack: with serial and

fully-parallel filtering scans, and with no filtering-scan. It can be seen that the filtering scans

improve performance, except for the serial filtering-scan at 1Gbps, and this is due to the

latency in the serial probes. Performance issues for containment are very similar to those

described for the TCP scan-and-attack. Outcomes for the UDP scan-and-attack, with a

filtering scan, at 1Mbps, are shown in Figure 5.1.1.3.1-3.

Table 5.1.1.3.1-2 : Rates of compromise for the UDP scan-and-attack with a filtering-

scan

rvuln * x t_NT rvuln * x t_NT rvuln * x t_NT

none 0.000833 240123.9 0.833 240.1 832.90 0.24

serial 0.002627 76128.8 0.966 207.1 1.52 131.15

parallel 0.004712 42443.3 4.712 42.4 4712.17 0.04

none 0.000003 61471719.4 0.003 61471.7 3.25 61.47

serial 0.000010 20283892.3 0.004 53804.8 0.01 33574.68

parallel 0.000017 11660403.2 0.017 11660.4 17.15 11.66

network

class

filter

scan

A

1Kbps 1Mbps 1Gbps

B

 124

UDP Scan-and-Attack, with Filtering Scans

at 1Mbps on a Class A Network

Cvuln(c) : Average Number of Servers Compromised,

as a Function of the Average Containment Time

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

average containment time (seconds)

a
v
e

ra
g

e
 n

u
m

b
e

r
o

f
s
e
rv

e
rs

c
o

m
p

ro
m

is
e
d

 (
C

v
u

ln
)

parallel filtering
scan
serial filtering scan

no filtering scan

Figure 5.1.1.3.1-3 : UDP scan-and-attack with filtering-scans

The performance of the information-retrieval scan, in the default network

configurations, is shown in Table 5.1.1.3.1-3. TCP ping is modeled. (r̄vuln * x̄) is the

average rate at which the scan finds vulnerable computers (probe-response type vuln). (r̄aff *

x̄) is the average rate at which the scan receives affirmative replies (probe-response types:

nc_imp, sec, and vuln). These averages are over an infinite number of scans. Figure

5.1.1.3.1-4 shows outcomes for the information-retrieval scan, at 1Mbps on a class A

network. The graph plots C̄VULN(c̄) and C̄AFF(c̄). C̄AFF was defined in section 5.1.1.1.2 (page

97), and C̄AFF(c̄) is calculated as shown below:

C̄AFF(c̄) = c̄ * (r̄aff * x̄) —from (21) (23)

 125

Ideally, scans should be contained before they access a single vulnerable computer.

This appears feasible for all but the fully parallel scan on a class B network. In addition, the

scanner receives a substantial amount of noise relative to the number of vulnerable

computers discovered. In particular, the ratio between (r̄aff * x̄) and (r̄vuln * x̄) ranges from

approximately 10:1 to 100K:1, depending on the scan type and network.

Table 5.1.1.3.1-3 : Rates of discovery for the information-retrieval scan

rvuln * x raff * x t_NT rvuln * x raff * x t_NT

serial 1.009 12.2 198.2 1.525 18.5 131.14

parallel 5.960 72.3 33.6 5960.464 72300.4 0.03

serial 0.004 16.5 50734.3 0.006 25.0 33571.61

parallel 0.023 97.6 8589.9 23.283 97557.2 8.59

B

A

1Mbps 1Gbpsnetwork

class

trans.

type

Information Retrieval Scan, Using TCP Ping

at 1Mbps on a Class A Network

Average Number of Replies, as a Function of the Average Containment Time

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

100.0000

1000.0000

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

average containment time (seconds)

a
v
e
ra

g
e

 n
u
m

b
e
r

o
f
re

p
lie

s
 (

lo
g
 s

c
a

le
)

parallel scan - number affirmative replies

serial scan - number affirmative replies

parallel scan - number vuln. comp. replies

serial scan - number vuln. comp. replies

Figure 5.1.1.3.1-4 : The information-retrieval scan

 126

5.1.1.3.2 The likelihood of compromise

As defined earlier, C̄VULN is the average number of computers that are compromised,

prior to containment (equation (22)). For a given value of C̄VULN, it would be useful to know

the probability that the scan will access one or more vulnerable computers. An example will

help to illustrate. For a particular Net-Chaff deployment, the rate-based models are used to

estimate scan outcomes. For worst-case scan scenarios, C̄VULN is estimated to be 0.5.

However, given that C̄VULN is 0.5, what is the probability that such scans would compromise

one or more vulnerable computers, before being contained? This probability will be

represented by the variable Pvuln, and it is calculated as a function of C̄VULN. The remainder

of this section shows how Pvuln can be calculated. This calculation is especially useful for

assessing Net-Chaff’s ability to stop worms from spreading.

Pvuln is calculated differently, depending on whether the scanner selects addresses

with, or without, replacement. However, in both cases, the first step is to determine the

number of probes (n) that the scanner performs for a particular value of C̄VULN. The

parameter Nvuln is the number of vulnerable computers on the network:

C̄VULN = r̄vuln * n —C̄VULN is an average over an infinite number of scans (24)

n = C̄VULN * (NT / Nvuln) —from (24) and (8) (25)

The next step is to calculate the probability that n probes will access no vulnerable

computers. This probability will be represented by the variable Pno_vuln. In general, Pvuln is

calculated as:

Pvuln = 1 - Pno_vuln (26)

Let Nnot_vuln be the number of network addresses that do not contain a vulnerable

server, so that:

 127

Nnot_vuln = NT - Nvuln (27)

When the scanner selects addresses with replacement, then (Nnot_vuln / NT) is the

probability that a probe will access a computer that is not vulnerable. Therefore, when

selecting (scanning) n addresses with replacement, Pno_vuln can be calculated using equation

(28), below. Pvuln can be calculated using equations (28) and (26).

Pno_vuln = (Nnot_vuln / NT)
n
 — since probes are independent (28)

The other case to consider is when the scanner selects addresses without replacement.

In this case, the probability that a probe will access a computer that is not vulnerable depends

upon the number of prior probes. When selecting (scanning) n addresses with replacement,

Pno_vuln can be calculated using equation (29), below. Pvuln can be calculated using equations

(29) and (26).

Pno_vuln =) 1) i - (N / 1) i - (N (
n

1 i

Tnot_vuln∏
=

++ (29)

Figure 5.1.1.3.2-1 shows the calculations of Pvuln for the default class A and B

networks, and the two address selection techniques, for a total of 4 curves. The calculations

are based on equations (28) and (29). The C̄VULN values shown range from 0 to 6.6, in

increments of 0.2. Although these curves are for different network sizes and different

address selection techniques, they are almost identical. For each C̄VULN value, four

calculations are made (one for each curve), and the difference among the four calculations

was always less than 0.002. The similarity among these curves suggests the opportunity for

modeling Pvuln using the Poisson distribution, which will be described next.

 128

Average Number of Vulnerable Hosts Found by the Scanner (CVULN) vs.

Probability the Scan Will Find One or More Vulnerable Hosts (PVULN)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

average number of vulnerable hosts found (CVULN)

p
ro

b
a
b
ili

ty
 t

h
e

 s
c
a
n

 w
ill

 f
in

d
 o

n
e

o
r

m
o
re

 v
u

ln
e
ra

b
le

 h
o
s
ts

 (
P

V

U
L
N
)

default class A network - sampling with replacement

default class B network - sampling with replacement

default class A network - sampling without replacement

default class B network - sampling without replacement

Figure 5.1.1.3.2-1 : Calculations of PVULN for the default networks

For typical Net-Chaff scenarios, PVULN can be calculated using the Poisson

distribution’s probability mass function (PMF). By using the Poisson PMF, a single equation

can be used to calculate PVULN, and the equation is shown below. The equation is applicable

for address selection with, and without, replacement. Further, this equation is only

dependent upon C̄VULN, and it applies to a wide range of network sizes and Net-Chaff

configurations (see equation (35) on page 131).

)(

ln 1 VULNC

vu eP −
−=

The derivation of this equation is shown in the remainder of this section. In overview,

 129

the following are shown: 1) in typical Net-Chaff scenarios, the binomial distribution can be

used to calculate Pno_vuln for both address selection with replacement, and without

replacement. 2) Further, in these scenarios, the binomial distribution can be approximated by

the Poisson distribution. Thus Pno_vuln can be calculated using the Poisson PMF. A more

detailed explanation follows.

When selecting addresses with replacement Pno_vuln can be modeled using the

binomial distribution. Equation (28) calculates Pno_vuln for address selection with

replacement. This equation can be derived from the binomial distribution’s PMF. The PMF

is shown in equation (30), with parameters y (number of successes), p (probability of

success) and m (number of samples). To derive equation (28) from the PMF: y is set to

zero; m is the number of probes, as calculated in equation (25); p is (Nvuln / NT), and (1-p) is

(Nnot_vuln / NT).

ymy
pp

y

m
pmyp

−
−

=)1(),;(for y = 0, 1, 2, . . . m (30)

When selecting addresses without replacement Pno_vuln can be modeled using the

hypergeometric distribution. Equation (29) calculates Pno_vuln for address selection without

replacement. This equation can be derived from the hypergeometric distribution’s PMF.

The PMF is shown in equation (31), with parameters y (number of successes), T (population

size), U (number of elements in the population that constitute success) and m (sample size).

To derive equation (28) from the PMF: y is set to zero; T is set to NT; U is set to Nvuln, and

m is the number of probes, as calculated in equation (25).

−

−

=

m

T

ym

UT

y

U

 m)U,T, p(y; (31)

 130

From probability theory, it is known that the hypergeometric distribution can be

approximated by the binomial distribution [Dev91]. This is possible when, from equation

(31), the population size (T) is much larger than the sample size (m). For the Net-Chaff

analysis, this condition holds when the network size is much larger than the number of

probes that occur before containment, i.e., when (n << NT), for n as calculated in equation

(25). In such cases, if the scanner selects addresses without replacement, Pno_vuln can be

calculated by using the binomial PMF, i.e., equation (28).

Thus, for many typical Net-Chaff scenarios, Pno_vuln can be modeled by the binomial

distribution, when selecting addresses with, or without, replacement. Further, from

probability theory, it is known that the binomial distribution can be estimated by the Poisson

distribution [Dev91]. The Poisson PMF is shown in equation (32). It calculates the

probability of exactly v occurrences, where: v is a non-negative integer, and α is a positive

real number that represents the expected number of occurrences during a given interval.

!
) p(v;

v

e
vα

α
α−

=
(32)

The binomial distribution can be estimated by the Poisson distribution under a

requisite condition. It is that, for the binomial PMF (equation (28)), m be very large and p be

very small. For the Net-Chaff analysis, this condition holds when many probes occur before

containment, i.e., n is large, as calculated in equation (25). For Net-Chaff, p is (Nvuln / NT),

which is typically very small. In Figure 5.1.1.3.2-1, the calculations are made for the default

class A and B networks, and for C̄VULN values ranging from 0 to 6.6. For the C̄VULN value of

1.0, n is 83886 and 327, for the default class A and B networks, respectively. For the default

class A and B networks, p is 0.00001 and 0.003, respectively. These values appear to meet

the conditions for using the Poisson distribution as an approximation for the binomial

distribution.

 131

Under the requisite condition just given, the binomial PMF can be approximated by

the Poisson PMF, as shown in equation (33) [Dev91]. The parameters y, m and p, are as

defined for the binomial PMF. To use equation (33) to calculate Pno_vuln: y is set to zero; m

is the number of probes, as calculated in equation (25), and p is (Nvuln / NT). However, (m*p)

reduces to C̄VULN, as shown in equation (34). The Poisson distribution can be used to

calculate Pno_vuln and Pvuln as shown in equations (35) and (36), respectively. If equation (36)

is plotted in Figure 5.1.1.3.2-1, it produces a curve that is almost identical to the four curves

that are there. More specifically, for each value of C̄VULN, the result calculated is within

0.002 of the results for the four curves.

!

)*(
))*(;(

)*(

y

pme
pmyp

ypm−

=
(33)

(m*p) = { (C̄VULN * (NT / Nvuln)) * (Nvuln / NT) } = C̄VULN (34)

)(

ln_
VULNC

vuno eP
−

= —from (33) and (34), and since y = 0
(35)

)(

ln 1 VULNC

vu eP
−

−= —from (26) and (35)
(36)

In summary, Pvuln can be calculated using the Poisson PMF, as shown in equation

(36). The equation is only dependent upon C̄VULN. The shape of the curve is almost identical

to the curves shown in Figure 5.1.1.3.2-1. The equation is an approximate solution for many

typical Net-Chaff scenarios, including scans that randomly select address with, and without,

replacement. In particular, it is applicable when the following conditions are met: n is large,

for n as calculated in equation (25); (n << NT), and the ratio (Nvuln / NT) is very small.

Further, Figure 5.1.1.3.2-1 shows that if C̄VULN is less than one, then a worm can potentially

spread, but it is not likely to spread very far. The likelihood of worm spread can be

calculated using the equations derived here, and the calculation is left for future research.

 132

5.1.1.3.3 Summary

This section used the rate-based models to estimate Net-Chaff’s performance. The

analysis focused on Net-Chaff’s ability to prevent scanners from accessing vulnerable

computers. Fast scanner performance was calculated by modeling scans with small-sized

probes, high bandwidth, and fully parallel probe transmission. A large corporate network

was modeled, with 20K computers and 200 vulnerable computers. Typical Net-Chaff

deployments were modeled, with a moderate amount of impersonations for slowing down

scans. In practice, scans could be further slowed by using more impersonations, and the “tar-

pits” described in chapter 4.

The analysis indicates that Net-Chaff can effectively contain scans for many typical

networks and scan types. The scan-and-attack analysis indicates that Net-Chaff has the

potential for stopping worms from spreading. To stop worms, a scan’s average number of

compromised computers (C̄VULN) must be less than one. For the class A network, the

requisite containment times appear to be achievable in practice, given current technology.

However, in many class B networks the requisite containment times may not be achievable

for fully parallel scans at, or above, 100Mbps. Further research is needed to learn the

specific containment speeds that are possible with the current network technology.

Net-Chaff’s performance in containing information-retrieval scans is similar to its

performance for containing scan-and-attack scans. In addition, information-retrieval scans

receive a substantial amount of noise from Net-Chaff, relative to the vulnerable computers

discovered.

For a given value of C̄VULN, it would be useful to know the probability that the scan

will access one or more vulnerable computers. This probability will be represented by the

variable Pvuln, and it is calculated as a function of C̄VULN. The Poisson PMF can be used to

calculate Pvuln. This calculation provides an approximate solution for many typical Net-

Chaff scenarios. It indicates that if C̄VULN is less than one, then a worm could potentially

spread, but not far.

 133

5.1.1.4 Elements of Net-Chaff performance

One of Net-Chaff’s primary objectives is reducing the average number of vulnerable

computers that are accessed by scanners (C̄VULN). This section analyzes the elements of Net-

Chaff that determine C̄VULN. The purpose of the analysis is to understand: 1) how to

effectively configure Net-Chaff deployments, and 2) the role of deception in reducing C̄VULN.

An equation for estimating C̄VULN was given earlier (equation (22) on page 119), and

it is repeated below. As the equation shows, C̄VULN is determined by three factors: the

containment time (c̄), the average network scan rate (x̄), and the proportion of vulnerable

computers on the network (r̄vuln). C̄VULN and each of its factors are an average achieved over

an infinite number of scans. Any percentage reduction in a factor will result in the same

reduction in C̄VULN, e.g., cutting c̄ in half will cut C̄VULN in half.

The following three subsections examine each of the three C̄VULN factors,

respectively. Most of the analysis is illustrated by showing outcomes for the fully-parallel

TCP scan-and-attack running at 100Mbps. The scan occurs on the default class A network.

(This scan and network were defined in section 5.1.1.2.4 on page 114.) This scenario

represents an effective Net-Chaff deployment vs. a fast scan. Also, the analysis focuses on

the example web-server scans, including Net-Chaff impersonations for web-servers (i.e.,

probe-response type nc_imp), and vulnerable web-servers (i.e., probe-response type vuln).

5.1.1.4.1 Containment time

An equation for estimating the average containment time (c̄) was given earlier

(equation on page 59), and it is repeated below. It is the sum of the average detection time

(d̄) and the blocking time (b). An equation for estimating the average detection time (d̄) was

given earlier (equation (17) on page 112), and it is also repeated here.

C̄VULN = c̄ * x̄ * r̄vuln (22)

 134

c̄ = d̄ + b

d̄ = [z / (r̄nc * x̄)] - λ (17)

This section examines how C̄VULN can be reduced by altering the parameters in

equations (17) and . The blocking time can be reduced by technical means, e.g., speeding up

communication with the blocking routers. C̄VULN can be expressed as a function of the

blocking time, with all other parameters kept constant. The function is represented as C̄

VULN(b). It is shown below, and the dependent variable is in bold, for clarity. It is a linear

equation, with slope (x̄ * r̄vuln). For Net-Chaff deployments, this equation can be used to

asses the benefits of reducing the blocking time.

C̄VULN(b) = b * (x̄ * r̄vuln) + (d̄ * x̄ * r̄vuln) —from (22) and

Figure 5.1.1.4.1-1 shows C̄VULN(b) for a TCP Scan-and-Attack. (Due to type-setting

limitations, the graph’s labels omit the bar over C̄VULN.) A fully parallel scan is modeled,

using 100Mbps. The default class A network is used. The detection threshold (z) is

500 probes, and the slope is 1.654 . In this case, reducing b is a potentially

effective technique for reducing C̄VULN.

 135

CVULN(b) for the TCP Scan-and-Attack,

at 100Mbps on the Default Class A Network

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

0 1 2 3 4 5

blocking time (b), in seconds

a
v
e

ra
g
e

 n
u

m
b

e
r

o
f

v
u

ln
e
ra

b
le

c
o
m

p
u
te

rs
 c

o
m

p
ro

m
is

e
d
 (

C
 V

U
L

N
(b

))

Figure 5.1.1.4.1-1 : C̄VULN(b)

For Net-Chaff deployments, d̄ can be reduced by reducing the detection threshold (z).

C̄VULN can be expressed as a function of the detection threshold, with all other parameters

kept constant, i.e., C̄VULN(z). The derivation of C̄VULN(z) is shown below. In equation (38), its

λ term is assumed to be negligible, and it is omitted in equation (39). C̄VULN(z) is a linear

equation with slope (r̄vuln / r̄nc). Typically, (r̄vuln / r̄nc) is small. Thus, changes in z typically

have a relatively small affect on C̄VULN. For example, in the default class A network the ratio

(r̄vuln / r̄nc) is 0.00001. In addition, requirements for detection accuracy will limit the amount

z can be reduced.

C̄VULN = (b + d̄) * x̄ * r̄vuln —from (22) and (37)

 136

C̄VULN = (b + ([z / (r̄nc * x̄)] - λ)) * x̄ * r̄vuln —from (17) and (37) (38)

C̄VULN(z) = z * (r̄vuln / r̄nc) + (b * x̄ * r̄vuln) —from (38) and omitting λ (39)

Figure 5.1.1.4.1-2 shows C̄VULN(z) for a TCP Scan-and-Attack. A fully parallel scan is

modeled, using 100Mbps. The default class A network is used. The blocking time (b) is

0.250 seconds and the slope is 0.00001. In practice, decreasing z from 2,000 to 500

would have no appreciable affect on C̄VULN, but it may reduce detection accuracy

substantially.

CVULN(z) for the TCP Scan-and-Attack,

at 100Mbps on the Default Class A Network

0.410

0.415

0.420

0.425

0.430

0.435

0.440

0 500 1000 1500 2000

detection threshold (z) (probes)

a
v
e
ra

g
e
 n

u
m

b
e
r

o
f
v
u
ln

e
ra

b
le

 c
o
m

p
u
te

rs

c
o
m

p
ro

m
is

e
d

 (
C

 V
U

L
N
(z

))

Figure 5.1.1.4.1-2 : C̄VULN(z)

 137

Net-Chaff detects scans by monitoring the probes sent to the addresses it manages. d̄

can also be reduced by increasing r̄nc, which is the ratio between the Net-Chaff managed

addresses and the total number of network addresses, i.e., (NNC / NT). C̄VULN can be

expressed as a function of r̄nc (i.e., C̄VULN(r̄nc)), with all other parameters kept constant:

C̄VULN(r̄nc) = (1/r̄nc) * (z * r̄vuln) + (b * x̄ * r̄vuln) —by reordering (39) (40)

Increasing r̄nc causes C̄VULN to decrease at a rate proportional to (1/ r̄nc), if all other

parameters remain constant. Thus, scan detection can be improved by increasing r̄nc, but this

provides diminishing marginal reductions in C̄VULN, i.e., the slope of (1/ r̄nc) is (-1 / (r̄nc)
2
).

In practice, when r̄nc is changed, some of the other parameters in equation (40)

typically do not remain constant. For example, an increase in r̄nc will usually result in a

decrease in x̄, which also reduces C̄VULN. This will be further addressed in the next section.

Figure 5.1.1.4.1-3 shows C̄VULN(r̄nc) for a TCP Scan-and-Attack. r̄nc is the

independent variable, and all other parameters are kept constant. A fully parallel scan is

modeled, using 100Mbps. The blocking time (b) is 0.250 seconds and the detection

threshold (z) is 500 probes. The default class A network is used, with one exception.

In this case, Net-Chaff is not using impersonations, in order to make x̄ constant. r̄nc is

calculated as (NNC / NT). NT is fixed for the class A network, and NNC is varied. r̄nc ranges

from 0.1 up to the maximum value, which is close to 1.0.

This scenario and graph reveal design principles for Net-Chaff deployments. If the

Net-Chaff managed addresses do not appreciably slow down a scan, their usefulness lies

solely in scan detection (i.e., as calculated by d̄). Further, for the purpose of scan detection,

Net-Chaff may only need to monitor a small fraction of the network addresses. For example,

in Figure 5.1.1.4.1-3 increasing r̄nc beyong 0.2 provides relatively little reduction in C̄VULN.

 138

CVULN(rnc) for the TCP Scan-and-Attack,

at 100Mbps on the Default Class A Network

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fraction of network addresses that are managed by net-chaff (rnc)

a
v
e

ra
g

e
 n

u
m

b
e

r
o

f
v
u

ln
e

ra
b
le

c
o
m

p
u

te
rs

 c
o

m
p

ro
m

is
e

d
 (

C
 V

U
L

N
(r

n
c)

)

Figure 5.1.1.4.1-3 : C̄VULN(r̄nc)

5.1.1.4.2 The average network probe rate

This section analyzes how Net-Chaff’s low-level impersonations can be used to

reduce the average network probe rate (x̄), for typical Net-Chaff deployments. Net-Chaff can

reduce x̄ by deceptive probe responses, including no response. The low-level impersonations

can cause the scanner to send extra packets and thereby slow it down. Also, by not sending

expected replies, Net-Chaff can cause the scanner to retransmit packets. Further, Net-Chaff

can use delays to slow scanners that suspend transmission while they await replies, e.g.,

serial scans. Additional delay techniques can be used, such as the “tar pits” described in

chapter 4. This section focuses on reducing probe rates through the use of Net-Chaff’s low-

level impersonations. Analysis of other types of Net-Chaff responses, or delays, are left for

future research.

 139

This analysis is based on the equation for C̄VULN, and it uses an expanded form that is

shown in equation (41). The expanded form is derived from equation (38). Again, the λ

term is assumed to be negligible, so it is omitted in equation (41).

C̄VULN = ([b * x̄] + [z / r̄nc]) * r̄vuln —from (38) and omitting λ (41)

The average network probe rate (x̄) can be estimated by using the equations derived

in section 5.1.1.2.1 (page 103). That section’s equation (9) will be used in this analysis, and

the equation is repeated here:

∑
∈

=

Si

ii xr
x

/

1
 (9)

There are two ways x̄ can be reduced for Net-Chaff deployments:

• the individual probe rates (xi) can be reduced for Net-Chaff’s probe-response types.

However, as mentioned earlier, this section focuses on reducing x̄ via low-level

impersonations. Further reducing Net-Chaff’s probe-response types is beyond the scope

of this research.

• r̄i can be increased for Net-Chaff’s slow probe-response types (see equation (8) on page

107). This involves increasing the proportion of network addresses that use Net-Chaff’s

slow probe-response types. For the example web-server scans, the proportion of

impersonations would be increased, i.e., (Nnc_imp / NT) (see Table 5.1.1.2.4-2 on page

115).

Regarding the latter bullet, there are three techniques for increasing the number of

addresses that use Net-Chaff’s slow probe response types. All three of the techniques can

reduce x̄, and two of the techniques provide additional effects that further reduce C̄VULN. The

 140

three techniques are described below.

• The network size (NT) is kept fixed, as well as the number of Net-Chaff managed

addresses (NNC).

In this case, to reduce x̄ the percentage of slow probe-response types is increased, for

the Net-Chaff managed addresses. For the example network and web-server scan, the number

of Net-Chaff managed addresses with server impersonations is represented as Nnc_imp. This

technique would increase Nnc_imp while keeping NNC fixed. A limitation of the technique is

that the percentage of Net-Chaff impersonations must be kept low enough to prevent counter-

deception, as was discussed in chapter 4.

This technique’s effectiveness can be estimated, for reducing x̄ and C̄VULN. The

fraction of Net-Chaff-managed addresses with server impersonations is (Nnc_imp / NNC).

Figure 5.1.1.4.2-1 shows x̄ as a function of (Nnc_imp / NNC). NNC is fixed and Nnc_imp is varied.

A fully parallel TCP Scan-and-Attack is modeled, using 100Mbps. The default class A

network is being used, with the exception that NNC is varied. The blocking time (b) is

0.250 seconds and the detection threshold (z) is 500 probes. For the

default class A network, the number of Net-Chaff managed addresses (NNC) is more than

99% of the network, so the maximum value for r̄nc_imp (i.e., (Nnc_imp / NT)) is almost one. The

decrease in x̄ is due to the increase in its r̄nc_imp term; thus the graph is roughly proportional

to (1 / r̄nc_imp).

Figure 5.1.1.4.2-2 shows C̄VULN as a function of (Nnc_imp / NNC). The network and scan

parameters are the same as those used for Figure 5.1.1.4.2-1. C̄VULN is being reduced solely

by a decrease in x̄.

Figure 5.1.1.4.2-2 reveals a design principle for Net-Chaff deployments when (NNC /

NT) is large (e.g., near 1). For the Net-Chaff managed addresses, a small percentage of

impersonations can potentially reduce C̄VULN significantly. For example, in Figure

5.1.1.4.2-2 if (Nnc_imp / NNC) is increased from 0 to 0.2, then C̄VULN is reduced by more than

half. Beyond a certain point, increasing the percentage of impersonations not only risks

 141

counterdeception, but it may also provide relatively little reduction in C̄VULN.

x-bar as a Function of (Nnc_imp / NNC)

for the TCP Scan and Attack, at 100Mbps, on the Default Class A Network

0

25000

50000

75000

100000

125000

150000

175000

200000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Nnc_imp / NNC

a
v
e
ra

g
e
 n

e
tw

o
rk

 p
ro

b
e

 r
a
te

 (
x
-b

a
r)

Figure 5.1.1.4.2-1 : x̄ as a function of (Nnc_imp / NNC)

 142

CVULN as a Function of (Nnc_imp / NNC)

for the TCP Scan and Attack, at 100Mbps, on the Default Class A Network

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

0.550

0.600

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Nnc_imp / NNC

a
v
e

ra
g

e
 n

u
m

b
e
r

o
f

v
u

ln
e
ra

b
le

c
o

m
p
u

te
rs

 a
c
c
e

s
s
e

d
 (

C
 V

U
L
N
)

Figure 5.1.1.4.2-2 : C̄VULN as a function of (Nnc_imp / NNC)

• The network size (NT) is kept fixed, but the number of Net-Chaff managed
addresses (NNC) is increased.

In this case, the addresses added to Net-Chaff would typically be taken from the set of

unassigned addresses (see Table 5.1.1.2.4-2 on page 115). Impersonation will be used for

some, or all, of the addresses added to Net-Chaff. Collectively, the additional addresses will

have a lower average probe rate when managed by Net-Chaff than when they were

unassigned. This technique reduces C̄VULN in two ways. Among the parameters in equation

(41): it reduces x̄, and it increases r̄nc.

This technique’s effectiveness can be estimated, for reducing x̄ and C̄VULN. The

maximum number of addresses that Net-Chaff can potentially manage is equal to the size of

the network, minus the number of addresses assigned to real computers. Using the network

 143

parameters defined in Table 5.1.1.2.4-1 (page 115), this value is (NT – NR). The number of

addresses managed by Net-Chaff is a fraction of those that it can potentially manage: ((NNC /

(NT – NR) ≤ 1).

Figure 5.1.1.4.2-3 shows x̄ as a function of (NNC / (NT – NR)). NT and NR are fixed,

and NNC is varied. The default class A network (Table 5.1.1.2.4-1 on page 115) is being

used, with the exception that NNC is a variable. There are 20K addresses assigned to real

computers, so (NT – NR) is more than 99% of the network addresses. A fully parallel TCP

Scan-and-Attack is modeled, using 100Mbps. The blocking time (b) is 0.250

seconds and the detection threshold (z) is 500 probes. The figure graphs x̄ for three

different amounts of impersonations, calculated as percentages of NNC. The decrease in x̄ is

due to the increase in its r̄nc_imp term.

Figure 5.1.1.4.2-4 shows C̄VULN as a function of (NNC / (NT – NR)). The calculations

were made using equation (41). The network and scan parameters are the same as those used

for Figure 5.1.1.4.2-3.

Figure 5.1.1.4.2-4 reveals a design principle for Net-Chaff deployments when (NR /

NT) is small (e.g., near 0). Assigning a small fraction of the unused addresses to Net-Chaff

can potentially reduce C̄VULN significantly. For example, in Figure 5.1.1.4.2-4 if (NNC / (NT –

NR)) is increased from 0.01 to 0.2, then C̄VULN is reduced by more than half.

 144

x-bar as a Function of (NNC / (NT - NR))

for the TCP Scan and Attack, at 100Mbps, on the Default Class A Network

45000

60000

75000

90000

105000

120000

135000

150000

165000

180000

195000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

NNC / (NT - NR)

a
v
e
ra

g
e

 n
e
tw

o
rk

 p
ro

b
e

 r
a

te
 (

x
-b

a
r)

5% impersonations

15% impersonations

25% impersonations

Figure 5.1.1.4.2-3 : x̄ as a function of (NNC / (NT - NR))

CVULN as a Function of (NNC / (NT - NR))

for the TCP Scan and Attack, at 100Mbps, on the Default Class A Network

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

NNC / (NT - NR)

a
v
e
ra

g
e

 n
u
m

b
e
r

o
f

v
u
ln

e
ra

b
le

c
o
m

p
u
te

rs
 a

c
c
e
s
s
e
d
 (

C
V

U
L

N
)

5% impersonations

15% impersonations

25% impersonations

Figure 5.1.1.4.2-4 : C̄VULN as a function of (NNC / (NT - NR))

 145

• The network size (NT) is increased, and all new addresses are assigned to Net-Chaff
(NNC).

With Net-Chaff, increasing the network size would typically involve converting a

class B network to the reserved class A network. For the Net-Chaff managed addresses, the

distribution of the probe-response types would likely stay the same, e.g., (Nnc_imp / NNC)

would stay the same (see Table 5.1.1.2.4-2 on page 115). The Net-Chaff-managed addresses

would typically have a slower average probe rate than the other network addresses. This

technique of increasing the address space is especially effective as it reduces C̄VULN in three

ways. Among the parameters in equation (41): it typically reduces x̄, and it always increases

r̄nc and decreases r̄vuln.

This technique’s effectiveness can be estimated for reducing x̄ and C̄VULN. Figure

5.1.1.4.2-5 shows x̄ as a function of the network size (NT). The x-axis scale is log2, and the

values shown range from a class B network (2
16

 addresses) up to a class A network (2
24

addresses). The default network specifications are being used, with the exception that NT

varies in size. A fully parallel TCP Scan-and-Attack is modeled, using 100Mbps. The

blocking time (b) is 0.250 seconds and the detection threshold (z) is 500

probes. The figure graphs x̄ for three different amounts of impersonations, calculated as

percentages of NNC.

Figure 5.1.1.4.2-6 shows C̄VULN as a function of (NT). The calculations were made

using equation (41). The network and scan parameters are the same as those used for Figure

5.1.1.4.2-5.

 146

x-bar as a Function of (NT),

for the TCP Scan and Attack, at 100Mbps

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

160000

16 17 18 19 20 21 22 23 24

network size (NT), log2 scale

a
v
e
ra

g
e

 n
e

tw
o
rk

 p
ro

b
e
 r

a
te

 (
x
-b

a
r)

5% impersonations

15% impersonations

25% impersonations

Figure 5.1.1.4.2-5 : x̄ as a function of NT

CVULN as a Function of (NT),

for the TCP Scan and Attack, at 100Mbps

0

20

40

60

80

100

120

16 17 18 19 20 21 22 23 24

network size (NT), log2 scale

a
v
e

ra
g

e
 n

u
m

b
e

r
o
f

v
u

ln
e

ra
b

le

c
o

m
p
u

te
rs

 a
c
c
e
s
s
e
d

 (
C

V
U

L
N
) 5% impersonations

15% impersonations

25% impersonations

Figure 5.1.1.4.2-6 : C̄VULN as a function of NT

 147

5.1.1.4.3 The proportion of vulnerable computers in scans: r̄vuln

Within scans, the average proportion of vulnerable computers is represented by r̄vuln

(see equation (8) on page 107). It is calculated as the ratio of network addresses assigned to

vulnerable computers, i.e., (Nvuln / NT). For a given average network probe rate (x̄), r̄vuln

determines the rate at which vulnerable computers are probed, i.e., the number of vulnerable

computers probed per second. This rate is calculated as (x̄ * r̄vuln), as described earlier with

equation (22) (page 133).

C̄VULN is proportional to r̄vuln, as shown by equation (22). C̄VULN can be reduced by

reducing r̄vuln. There are two practical ways to reduce r̄vuln. One is to decrease the number of

vulnerable computers on the network, e.g., by improving host security. The other way is to

increase the size of the network’s address space. The added addresses are unused, and

ideally they would be assigned to Net-Chaff, to obtain further reductions in C̄VULN, as

described in the prior section.

In the example network configuration, the default class B network has 200 vulnerable

servers, and an r̄vuln value of 0.003. By converting to a class A address space, the r̄vuln value

would be 0.00001. In general, if a class B network is converted to a class A address space,

then the r̄vuln value for the class A network will be 0.004 of its value for the class B network.

The added addresses are unused and they substantially improve Net-Chaff’s performance.

More specifically, C̄VULN for the class A network would also be 0.004 of its value for the

class B network, if r̄vuln is the only parameter that differs for the two networks. However, if

the added addresses are assigned to Net-Chaff, C̄VULN will be further reduced for the class A

network, as described earlier.

Figure 5.1.1.4.3-1 shows r̄vuln as a function of the network size (NT), for a network

with 200 vulnerable computers. The x-axis is in log2 scale, and it ranges from the number of

addresses in a class B network, up to a class A network.

 148

rvuln as a Function of NT,

on a network with 200 vulnerable computers

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

16 17 18 19 20 21 22 23 24

NT, log2 scale

r v
u
ln

Figure 5.1.1.4.3-1 : r̄vuln as a function of the network size (NT)

When a network has a large number of unused addresses, relative to the number of

vulnerable computers, then the unused addresses serve to hide the vulnerable computers.

This is the passive hiding that was described in chapter 4. Passive hiding’s affect on r̄vuln

and C̄VULN can be quantified. Without the unused addresses, r̄vuln would be (Nvuln / NR).

With the unused addresses, r̄vuln is (Nvuln / NT). For example, in the default class A network,

20K addresses are assigned to real computers, of which 200 addresses are assigned to

vulnerable computers. (Nvuln / NR) is 0.01, and (Nvuln / NT) is 0.00001. In general, r̄vuln with

the unused addresses is (NT / NR) times smaller than r̄vuln without the unused addresses. In

the example, (NT / NR) is approximately 1,000. r̄vuln is a factor in calculating C̄VULN, as

shown by equation (22). Therefore, passive hiding’s affect on r̄vuln will ultimately have the

same affect on C̄VULN.

 149

5.1.1.4.4 Summary

This section analyzed the elements of Net-Chaff deployments that affect its

performance. The purpose of the analysis is to understand: 1) how to effectively configure

Net-Chaff deployments, and 2) the role of deception. The analysis focused on the example

web-server scan, which includes Net-Chaff impersonations and vulnerable web-servers. For

a Net-Chaff deployment, this analysis is applicable to other servers as well.

Net-Chaff’s performance is evaluated in terms of the average number of vulnerable

computers compromised by a scan (C̄VULN), and the equation is repeated below. Each term in

the equation was analyzed with respect to reducing C̄VULN.

C̄VULN = ([b * x̄] + [z / r̄nc]) * r̄vuln (41)

The average network probe rate (x̄) can be reduced by Net-Chaff’s deceptions. As

shown by equation (9) (page 107), x̄ can be reduced by slowing down the probe rate for Net-

Chaff’s probe-response types, i.e., decreasing xi for Net-Chaff’s probe-response types.

Alternatively, x̄ can be reduced by increasing the proportion of Net-Chaff’s slow probe-

response types on the network, i.e., increasing r̄i for Net-Chaff’s probe-response types. The

analysis focused on increasing the proportion of Net-Chaff’s low-level impersonations on the

network, i.e., increasing r̄nc_imp. Three techniques for increasing r̄nc_imp were examined. The

most effective technique was to increase the network size, and assign all new addresses to

Net-Chaff. This reduces C̄VULN in three ways: 1) it typically reduces x̄, 2) it always increases

r̄nc, and 3) it always decreases r̄vuln. Converting from a class B network to a class A network

can be the most effective way to reduce C̄VULN, as Net-Chaff’s performance is improved in

these three ways.

C̄VULN can also be reduced by reducing the containment time. There are three Net-

Chaff parameters that can be configured to reduce the containment time: 1) the blocking

time (b) can be reduced by technical means. The reduction in C̄VULN is proportional to (x̄ * r̄

vuln). 2) The detection threshold (z) can be reduced, but doing so may reduce detection

 150

accuracy. Also, when r̄nc is large (e.g., near one), and r̄vuln is very small, then reductions in z

will cause relatively insignificant reductions in C̄VULN. These conditions are typical for

effective Net-Chaff deployments. 3) r̄nc is calculated as the ratio of Net-Chaff-managed

addresses to the total number of addresses (NNC/NT). r̄nc can be increased to speed-up scan

detection. The speed-up in scan detection provides diminishing marginal reductions in C̄

VULN, i.e., C̄VULN(r̄nc) is proportional to (1/ r̄nc).

C̄VULN is proportional to r̄vuln, as shown by equation (41). There are two practical

ways to reduce r̄vuln. One is to decrease the number of vulnerable computers on the network.

The other way is to increase the size of the network’s address space. The added addresses

are unused. When a network has a large number of unused addresses, relative to the number

of vulnerable computers, then the unused addresses serve to hide the vulnerable computers.

This passive hiding reduces C̄VULN to the same extent that r̄vuln is reduced, and the reduction

can be calculated, as shown earlier.

Net-Chaff’s deceptions serve to slow down scans. However, increasing the fraction

of Net-Chaff impersonations (Nnc_imp/NNC) provides diminishing marginal reductions in C̄

VULN. For instance, when almost all network addresses are managed by Net-Chaff (i.e., (NNC

/ NT) ≈ 1), then a small percentage of impersonations (e.g., (Nnc_imp/NNC) ≈ 0.2) may reduce C̄

VULN significantly. Beyond a certain point, increasing the percentage of impersonations can

not only risk counterdeception, but it may also provide relatively little reduction in C̄VULN.

5.1.1.5 Taxonomy of probe-response types

A central component of the rate-based models is the taxonomy of probe-responses.

The taxonomy’s categories are probe-response types. Such a taxonomy was presented in

section 5.1.1.1.3 (page 99). This taxonomy was developed for the example networks and

scans that are used for the Net-Chaff analysis. The rate-based models can also be used to

analyze other types of networks and scans. However, a different taxonomy of probe-

responses may be required. This section describes how the taxonomy of probe-response types

can be modified for use with other networks and scans. Also described are probe-response

 151

types from deception-based security devices other than Net-Chaff, e.g., honeypots. In this

section, the taxonomy of probe-responses will be referred to as simply the taxonomy.

The taxonomy is used by the rate-based models, and it models the network and

scanner that are being analyzed. The rate-based models’ primary calculations are: 1) the

average number of vulnerable computers accessed by the scan (C̄VULN, e.g., see equation (22)

on page 119), and 2) the average number of affirmative responses received by the scan (C̄AFF,

e.g., see equation (23) on page 124). The former calculation is used for all three scan types:

scan-and-attack, filtering scans, and information-retrieval scans. The latter calculation is just

used for information-retrieval scans.

In general, the taxonomy must include the probe-response types needed to calculate C̄

i, where i is a probe-response type whose outcome is of interest, e.g., C̄VULN or C̄AFF (see

equation (21) on page 114). The probe-response types are modeled relative to the scanner’s

capabilities. For example, the probe-response type for vulnerable servers (e.g., vuln) only

includes servers that are vulnerable to attack by the scan that is being analyzed. Probe-

response types are also needed for calculating the average network probe-rate (x̄) (see section

5.1.1.2.1 on page 103).

In addition to Net-Chaff, there are other security devices that use deception. The

taxonomy will need to include probe responses from these devices if their scan outcomes are

of interest (i.e., C̄i), or if they affect x̄. For example, LaBrea is a deceptive device that can

potentially stop a serial scan [LaB05]. If LaBrea is deployed, and it significantly affects x̄,

then it will need its own probe-response type. As another example, a certain honeypot has a

vulnerable web-server that is used for collecting intelligence. Many of these honeypots are

deployed on the network being analyzed. To calculate the average number of honeypots

accessed by scans, the honeypots would need their own probe-response type.

Firewalls often use deceptive replies in response to disallowed packets. For example,

firewalls can simply not reply to disallowed packets [Rus02]. This can delay scanners in two

ways: 1) serial scanners can be slowed down if they wait a long time for a reply, and 2)

scanners may interpret the non-response as a dropped packet, and retransmit the probe,

 152

perhaps multiple times. If this deception is used for many network addresses, it can reduce

scanners’ average network probe rate (x̄). Consequently, a probe response-type would be

needed for this deception. Another deception used by firewalls involves sending false-

negative replies to scanners [Rus02]. For example, the firewall can send an ICMP host-

unreachable message in response to a TCP ping. For the Net-Chaff analysis, its taxonomy is

sufficient for calculating x̄ (see Table 5.1.1.1.3-1 on page 100). The deceptive probe-

response would simply be included in the category “no server present” (ns).

5.1.2 Simulation

A simulation was used to verify the rate-based models. The simulation is a model of

scans on a network that is protected by Net-Chaff. A web-server TCP ping-scan was

simulated. This type of scan was also analyzed by the rate-based models in section 5.1.1.3.1

(page 120). The simulation model is packet-based, as it models the transmission and

reception of scan packets on the network. Overall, the simulation’s packet-based model is

slightly more accurate than the rate-based models. The simulation was implemented as a Java

program, and it consists of 1,600 lines of code.

Three different network-scan scenarios were modeled. For each of these scenarios,

both the simulation and rate-based models were used to calculate the Net-Chaff outcomes.

The Net-Chaff outcomes are defined as: 1) the average number of scanner probes that are

completed prior to containment (C̄), 2) the average number of affirmative replies received,

prior to containment (C̄AFF), 3) the average number of affirmative replies received from

vulnerable computers, prior to containment (C̄VULN), and 4) for a given value of C̄VULN, the

probability that a scan will probe one or more vulnerable computers (Pvuln). These outcomes

were described earlier for the rate-based models (in section 5.1.1.1.2 on page 97, and section

5.1.1.3.2 on page 126). The calculations made by the simulation and rate-based models were

compared. The results are very similar, which corroborates the rate-based models.

The Net-Chaff simulation is described in the following two subsections. The first

subsection describes the simulation’s design. The second subsection describes how the

simulation was used, and how it verifies the rate-based models.

 153

5.1.2.1 Design

An overview of the simulation design is presented first, and further details follow.

5.1.2.1.1 Overview

The simulation contains parameters for configuring its models of the network, the

scanner, and Net-Chaff. The simulation is configured by specifying these parameters.

The network scan is simulated, and the simulation is carried out in two stages. In the

first stage, the scan itself is simulated. All of the network addresses are probed (Net-Chaff

does not contain the scan). For each probe, its outcome is recorded in a relational database

(RDB). The probe outcome is defined as: 1) the probe’s response type, 2) the response’s

arrival time at the scanner, and 3) as applicable, the probe’s arrival time at the Net-Chaff

WAN server.

In the second stage, the RDB is used to calculate scan outcomes that would occur

with Net-Chaff containment. Scan outcomes are calculated for a particular detection

threshold and blocking time. The scan outcomes are defined as: 1) the number of scanner

probes that are completed prior to containment (C), 2) the number of affirmative replies

received, prior to containment (CAFF), and 3) the number of affirmative replies received from

vulnerable computers, prior to containment (CVULN). These three scan outcomes are very

similar to the first three Net-Chaff outcomes. The difference between them is that scan

outcomes are calculated for a particular scan, and Net-Chaff outcomes are calculated as

averages over many scans, as will be explained.

In calculating scan outcomes, the detection threshold (z) and blocking time (b) are

referred to, collectively, as the containment parameters. A particular pair of z and b values

will be referred to, collectively, as a containment-specification. The simulation’s

configuration-parameters include a set of containment-specifications. The set consists of n

pairs of z and b values: ((z1,b1), (z2,b2), ... (zn,bn)). In the second stage of the simulated

network-scan, scan outcomes are calculated for each of the containment-specifications. The

scan outcomes are stored in an RDB.

 154

The Net-Chaff analysis is concerned with scans that use random address-selection.

Therefore, the Net-Chaff outcomes must be calculated over many network scans, i.e., the

average values C̄, C̄AFF, and C̄VULN, and the probability value Pvuln. To make these

calculations, the overall simulation process is carried out in two steps. First, many simulated

network scans are preformed, e.g., 300. All of these network scans use the same simulation

configuration, including the same containment-specifications. In the second step of the

simulation, the Net-Chaff outcomes are calculated for each of the containment-parameter

specifications. The calculations are made using all of the scan outcomes from the simulated

network scans. When this overall simulation process is performed, it is referred to as a

simulation run. The overall simulation process is shown in Figure 5.1.2.1.1-1, in pseudo-code

format.

Figure 5.1.2.1.1-1 : Overall simulation process

perform simulation run:

• first step: perform simulated network scans

o j = number of simulated network scans to perform

o FOR i = 1 to j DO:

� perform a simulated network scan:

• first stage: simulate random probe of all network addresses

• second stage: for each of the containment-specifications,
calculate the scan outcomes: C, CAFF, CVULN

o END FOR loop

• second step: calculate the Net-Chaff outcomes: C̄, C̄AFF, C̄VULN, and Pvuln

o for each of the containment-specifications:

� calculate the Net-Chaff outcomes, over all of the simulated network scans

 155

The simulation design is further described in the following two subsections. The first

subsection describes the network scan. The second subsection describes how the Net-Chaff

outcomes are calculated for a simulation run.

5.1.2.1.2 Network scan

The simulated network-scan is performed in two stages, and each stage is further

described:

5.1.2.1.2.1 First stage: probe all addresses

In the first stage of the simulated network-scan, the scan’s probes are simulated, as

well as their responses. The entire network is scanned (Net-Chaff does not contain the scan).

The simulation models three system components: the network, scanner, and Net-Chaff

servers. The simulation of these components is described below.

• The network simulation:

A class B network is simulated. The network is represented by an array, and each

array element models an address in the network. Thus, the array has 2
16

 elements. Each

array element specifies an address and the type of probe-response from the address.

For a simulation run, its configuration-parameters specify the distribution of probe-

response types on the network. For each probe-response type, the specifications state how

many addresses are assigned that response type. These specifications are used to initialize

the network array. The location of the probe-response types in the network does not matter

because the scanner chooses addresses at random.

The simulation uses the probe-response types listed in Table 5.1.2.1.2.1-1. They are

similar to the probe-response types used for the rate-based models’ examples. However, for

the simulation, there are separate probe response-types for the Net-Chaff WAN and LAN

servers. The simulation models the Net-Chaff WAN and LAN servers separately, but the

rate-based models does not differentiate between them.

 156

Table 5.1.2.1.2.1-1 : The simulation’s probe-response types

Probe-Response Type Symbol

server impersonation ws_imp Net-Chaff

WAN server
no server present ws_ns

server impersonation ls_imp Net-Chaff

LAN server
no server present ls_ns

secure server sec

vulnerable server vuln
real

computers

no server present ns

• The scanner simulation

A fully parallel scan is modeled. The scanner sends probe-packets serially (i.e., one

at a time) and continuously. Each probe is simulated. The address to be probed is chosen

randomly, from among the addresses that have not been probed (i.e., addresses are chosen

without replacement). For each probe, the simulation determines the following: 1) the start

time for probe transmission, 2) the probe-response type and when it is received by the

scanner, and 3) the probe’s arrival time at the Net-Chaff WAN server, if applicable. The

latter two events are recorded in an RDB.

The simulation has probe timing-parameters that specify how much time the probe-

events take. The probe timing-parameters are: 1) for the TCP ping-scan, all probes use the

same initial packet, and its transmission time is specified. 2) For each of the probe-response

types, its probe completion time is specified (i.e., the time from the start of probe

transmission to the receipt of the probe response). 3) For probes to Net-Chaff-managed

addresses, the probes’ arrival time at the Net-Chaff WAN server is specified (i.e., the time

from the start of probe transmission to when the WAN server receives the probe). The probe

timing-parameters are based on the simulation’s transmission parameters: 1) the scanner’s

 157

bandwidth (a constant), and 2) the packet size (the same for all probe packets), and 3) the

network latency (an average over the network).

The scanner receives probe responses, and each response is recorded in an RDB table,

as illustrated in Table 5.1.2.1.2.1-2. Each entry records the time the response was received by

the scanner, and the response-type.

Table 5.1.2.1.2.1-2 : Probe responses, as recorded in the RDB table

time response was received: t1 t2 t3 t4 t5 t6 t7 ...

probe-response type:

w
s_

im
p

w
s_

n
s

ls_
n
s

sec

sec

v
u
ln

w
s_

im
p

...

• Simulation of the Net-Chaff WAN and LAN servers

Probes can be sent directly to the Net-Chaff WAN server, or they can be forwarded to

the WAN server via a Net-Chaff LAN server. Thus, probes addressed to the Net-Chaff

WAN and LAN servers require different probe timing-parameters. For this reason, the

simulation has different probe-response types for the Net-Chaff WAN and LAN servers.

For the probes sent to a Net-Chaff-managed address, their arrival time at the Net-

Chaff WAN server is recorded in an RDB table, as illustrated in Table 5.1.2.1.2.1-3. The

table is sorted by the time field.

 158

Table 5.1.2.1.2.1-3 : Probe arrival times at the Net-Chaff WAN server, as recorded in

the RDB table

probe arrival time: tA tB tC ...

5.1.2.1.2.2 Second stage: calculate scan outcomes

In the second stage of the simulated network-scan, the scan outcomes are calculated.

As described earlier, these are the outcomes that would occur with Net-Chaff containment.

The scan outcomes are: C, CVULN, and CAFF. Scan outcomes are calculated for each of the

containment-specifications. The calculations are based on the probe outcomes from the first

stage.

An example calculation is provided using the example RDB tables in the prior

section. For the containment-specification, the detection threshold is 3, and the blocking time

is T. Table 5.1.2.1.2.1-3 shows the detection threshold is reached at time tC, and

consequently, containment occurs at time (tC+T). Table 5.1.2.1.2.1-2 is used to calculate the

scan outcomes. For instance, if t6 <= (tC+T) < t7, then C is 6, CVULN is 1, and CAFF is 4.

The scan outcomes are stored in an RDB table, as illustrated by Figure 5.1.2.1.2.2-1.

The first row contains the field names, and the second row contains the results from the prior

example. The table uses a composite key that consists of the table’s first three fields. The

network-scan ID is assigned sequentially for each of the j simulated network-scans, i.e., 1, 2,

3, . . . j.

network-scan ID detection threshold blocking time C CVULN CAFF

1 3 T 6 1 4

Figure 5.1.2.1.2.2-1 : RDB table for storing scan outcomes

The simulation’s containment model is slightly more accurate than the one used for

the rate-based models. For the rate-based models, the calculation of n̄Z (equation (14) on

 159

page 111) involved two minor inaccuracies that are not present in the simulation model: 1)

the rate-based model assumes that probes arrive at the Net-Chaff WAN server in the order

that the scanner sends them, and 2) the calculation of n̄Z includes some probes after the z
th

probe sent to Net-Chaff. In addition, the rate-based model has some minor inaccuracies in

the calculation of C̄ (equation (20) on page 114) and Ci¯ ¯ (equation (21) on page 114). These

equations rely on estimates of the number of partially completed probes at the point of

containment. The simulation model avoids all of these inaccuracies because it is packet-

based, and because it uses separate probe-response types for the Net-Chaff WAN and LAN

servers. However, the inaccuracies are minor for typical Net-Chaff deployments. As will be

shown, there is little difference between the Net-Chaff outcomes calculated by the

simulation and rate-based models.

5.1.2.1.3 Net-Chaff outcomes

In the first step of a simulation run, the simulated network-scans are performed. In the

second step of the simulation run, the Net-Chaff outcomes are calculated. They are: C̄, C̄

VULN, C̄AFF, and Pvuln. The Net-Chaff outcomes are calculated for each of the containment-

specifications, as described below.

Some notation is needed first:

• Notation for the whole simulation run: let C_S_set be the set of containment-

specifications that are used for the simulation run. C_S is a particular containment-

specification in C_S_set.

• Notation for the first step of a simulation run: C is one of the scan outcomes, and it

was defined earlier as the number of scanner probes that are completed prior to

containment. For a particular simulated network-scan, let CC_S be the value of C for the

containment-specification C_S. For each simulated network scan, CC_S is calculated for

each containment-specification. CVULN is also a scan outcome, and it was defined earlier

as the number of affirmative replies received from vulnerable computers, prior to

containment. CVULN_C_S is the value of CVULN for C_S.

 160

• Notation for the second step of a simulation run: C̄ is a Net-Chaff outcome, and it was

defined earlier as the average number of scanner probes that are completed prior to

containment. Let C̄C_S be the value of C̄ for the containment-specification C_S. For a

simulation run, C̄ is calculated for each containment-specification, i.e., C̄C_S is calculated

for each C_S in C_S_set.

The Net-Chaff outcomes are calculated as follows:

• C̄C_S is calculated for each containment-specification. For a particular C_S, C̄C_S is

calculated as the average CC_S value, over all simulated network-scans.

• C̄AFF and C̄VULN are calculated in the same manner as C̄. C̄AFF and C̄VULN are calculated

for each containment-specification. Also, the average is calculated over all simulated

network scans.

• Pvuln is calculated for each containment-specification. Let Pvuln_C_S be the value of Pvuln

for the containment-specification C_S. Let num_vuln be the number of simulated

network scans for which CVULN is greater than zero. Let j be the number of simulated

network-scans in the simulation run. Pvuln_C_S is calculated as (num_vuln / j).

5.1.2.2 Experiments

The simulation was used to verify the rate-based models. Three simulation runs were

performed, and the simulation results were compared with results from the rate-based

models. This section describes the simulation runs, and how they verify the rate-based

models.

5.1.2.2.1 The simulation runs

Three simulation runs were performed, and they are labeled A, B, and C. Each

simulation run represents a particular network-scan scenario. The scenario models a typical

Net-Chaff deployment, and a typical network and scan. Each simulation run used a different

distribution of probe-response types. Table 5.1.2.2.1-1 shows the distributions, and it

specifies the number of network addresses assigned to each probe-response type. Simulation

runs A, B, and C are representative of networks with a small, medium and large number of

 161

computers, respectively. There are two types of real servers: secure and vulnerable. 10% of

the real servers are vulnerable. The simulation’s transmission parameters (defined in section

5.1.2.1.2.1 on page 155) are the same for all simulation runs: 1) the scanner bandwidth is

500Kbps; 2) the packet size is 60 bytes, and 3) the average network latency is 0.0003

seconds. These parameters are representative of a fairly fast scan, over a network with

extremely low latency. For each simulation run, 300 simulated network scans were

performed.

Table 5.1.2.2.1-1 : Probe-response distributions for the three simulation runs

Real Computers Net-Chaff Simulation

Run

secure

server

vulnerable

server

no server

present

server

impersonation

no

server

present

A 432 48 32 48,735 16,287

B 1,296 144 96 47,903 16,095

C 6,480 720 480 42,911 14,943

For each simulation run, the Net-Chaff outcomes are calculated for a set of

containment-specifications. Each of these sets is specified in Table 5.1.2.2.1-2. The table will

be explained, and its columns are cited in italics. Each row in the table specifies a simulation

run (Sim. Run). A simulation run’s set of containment-specifications is the pair-wise

combination of the detection thresholds (z) and blocking times (b) that are specified. For each

simulation run, the detection thresholds and blocking times have values that grow

exponentially. These distributions are used in order to focus on values that are likely in

practice, but the distributions also include extreme values. For each set of containment-

specifications, its size is specified. Also, the containment-specification with the longest

 162

containment time is specified. It is specified in terms of its z and b values, and its Net-Chaff

result C̄. Over the three simulation runs, there is a combined total of 432 containment-

specifications (i.e., 108+108+216 = 432).

Table 5.1.2.2.1-2 : Containment-specifications for the simulation runs

set of containment-specifications Sim.

Run

detection

thresholds (z,

number of

packets)

blocking times

(b, seconds)
size longest containment time

A 2
0
, 2

1
, ... 2

11
 2

-12
, 2

-11
, ... 2

5
 216 z=2048 and b=32,

C̄=35397

B, C 2
0
, 2

1
, ... 2

11
 4

-6
, 4

-5
, ... 4

2
 108 z=2048 and b=16,

C̄=18986

5.1.2.2.2 Simulation results vs. rate-based models

In total, the three simulation runs use 432 containment-specifications. For each of the

432 containment-specifications, both the rate-based models and the simulation were used to

calculate the Net-Chaff outcomes: C̄, C̄AFF, C̄VULN, and Pvuln. The outcomes from the rate-

based models and simulation were then compared. The comparisons for C̄, C̄AFF, C̄VULN are

described first, and the comparisons for Pvuln are described separately.

• Simulation vs. rate-based models for: C̄, C̄AFF, and C̄VULN

Let C_S be one of the 432 containment-specifications. Let C̄C_S_sim be the value of C̄

that is calculated for C_S, using the simulation. Similarly, C̄C_S_rate is the value of C̄ that is

calculated for C_S, using the rate-based models. Similar variables are defined for the values

calculated for C̄AFF (i.e., C̄AFF_C_S_sim and C̄AFF_C_S_rate) and for C̄VULN (i.e., C̄VULN_C_S_sim and

C̄VULN_C_S_rate).

 163

For C̄, C̄AFF, and C̄VULN, their outcomes from the rate-based models and simulation

are compared. How the outcomes are compared depends upon the length of the scan. The

432 containment-specifications are divided into two subsets. The short-scan subset is made-

up of the containment-specifications for which (C̄C_S_sim < 100). The subset consists of 130

containment-specifications. The longer-scans subset is made-up of the containment-

specifications for which (C̄C_S_sim ≥ 100). The subset consists of the remaining 302

containment-specifications.

For the short-scan subset, the outcomes from the rate-based models and simulation

are compared using the following algorithm: 1) For each element of the short-scan subset,

the results obtained for C̄ are compared using the equation: ABS(C̄C_S_sim - C̄C_S_rate), where

ABS is the absolute-value function. 2) To summarize these comparisons, the average value

for ABS(C̄C_S_sim - C̄C_S_rate) is calculated, over the subset. The minimum, maximum and

standard deviation are also calculated. These values are shown in Figure 5.1.2.2.2-1, under

the column labeled “C”. (In Figure 5.1.2.2.2-1 and Figure 5.1.2.2.2-2, the bars that indicate

average (as in C̄) are omitted due to type setting limitations). 3) The outcomes for C̄AFF, and

C̄VULN are compared in the same manner as C̄. These comparisons are also summarized in

Figure 5.1.2.2.2-1, and they are under the columns labeled “CAFF” and “CVULN”, respectively.

For the longer-scans subset, the results from the rate-based models and simulation are

compared using the following algorithm: 1) For each element of the longer-scans subset, the

results obtained for C̄ are compared using the equation: (ABS(C̄C_S_sim - C̄C_S_rate) / C̄C_S_sim),

where ABS is the absolute-value function. 2) To summarize these comparisons, the average

value for (ABS(C̄C_S_sim - C̄C_S_rate) / C̄C_S_sim) is calculated, over the subset. The minimum,

maximum and standard deviation are also calculated. These values are shown in Figure

5.1.2.2.2-2, under the column labeled “C”. 3) The outcomes for C̄AFF, and C̄VULN are

compared in the same manner as C̄. These comparisons are also summarized in Figure

5.1.2.2.2-2, and they are under the columns labeled “CAFF” and “CVULN”, respectively.

For the short-scans subset, the results are compared using actual differences, e.g.,

ABS(C̄C_S_sim - C̄C_S_rate). The relative differences were not used, as some are very large;

 164

however, for short scans, the actual difference is more significant in Net-Chaff planning. For

the longer-scans subset, the results are compared using relative differences, e.g., (ABS(C̄

C_S_sim - C̄C_S_rate) / C̄C_S_sim). Figure 5.1.2.2.2-1 and Figure 5.1.2.2.2-2 show that the results

from the rate-based models and simulation are very similar. For the purpose of Net-Chaff

planning, the average differences are extremely small, and even the maximum differences are

small. Thus the simulation results serve to corroborate the rate-based models’ calculation of

C̄, C̄VULN, and C̄AFF.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Summaries of the Comparisons

(actual difference)

Simulation Results vs. Rate-Based Models,

for the Containment-Parameter Specifications for which (CC_S_sim < 100)

min 0.890182 0.000008 0.559383

max 3.029046 0.055099 1.758654

average 1.724950 0.007785 1.279269

std. dev. 0.423655 0.008399 0.310566

C Cvuln Caff

Figure 5.1.2.2.2-1 : Simulation results vs. analytical models for (C̄C_S_sim < 100)

 165

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Summaries of the Comparisons

(relative difference)

Simulation Results vs. Rate-Based Models,

for the Containment-Parameter Specifications for which (CC_S_sim >= 100)

min 0.000032 0.000065 0.000000

max 0.016348 0.114822 0.015656

average 0.002410 0.025139 0.002552

std. dev. 0.003274 0.025342 0.003415

C Cvuln Caff

Figure 5.1.2.2.2-2 : Simulation results vs. analytical models for (C̄C_S_sim ≥ 100)

• Simulation results vs. rate-based models for: Pvuln

The rate-based models and the simulation were also used to calculate Pvuln, which is

the probability that a scan will probe one or more vulnerable computers, for a given value of

C̄VULN. The outcomes from the rate-based models and simulation were compared, as

described below.

In the simulation, Pvuln was calculated for each of the 432 containment-specifications.

Pvuln values are plotted in Figure 5.1.2.2.2-3, for the containment-specifications whose Pvuln

value is less than or equal to 0.997. Larger values of Pvuln were not plotted as they are not

relevant for Net-Chaff planning. There are 325 containment-specifications whose Pvuln value

is less than or equal to 0.997.

From the rate-based models, Pvuln can be calculated using the Poisson distribution, as

 166

was shown in equation (36) (page 131). This equation is also plotted in Figure 5.1.2.2.2-3.

From the figure, it can be seen visually that the simulation results were very similar to the

results from the equation. In addition, a quantitative comparison was made between the

simulation results and the results from the equation. The comparison was made as described

below.

Let C_S be one of the 325 containment-specifications for which (Pvuln ≤ 0.997). Let

Pvuln _C_S_sim be the value of Pvuln that is calculated for C_S, using the simulation. Similarly,

Pvuln _C_S_rate is the value of C̄ that is calculated for C_S, using equation (36).

The results from the simulation and equation (36) are compared using the following

algorithm: 1) For each of the 325 containment-specifications, the values obtained for Pvuln

are compared using the equation: ABS(Pvuln_C_S_sim - Pvuln_C_S_rate), where ABS is the

absolute-value function. 2) To summarize these comparisons, the average value for

ABS(Pvuln_C_S_sim - Pvuln_C_S_rate) is calculated, over the subset. The minimum, maximum and

standard deviation are also calculated. This summary is shown in Table 5.1.2.2.2-1. The

results from the rate-based model and simulation are very similar. For the purpose of Net-

Chaff planning, the average difference is extremely small, and even the maximum difference

is small. Thus the simulation results serve to corroborate the rate-based model’s calculation

of Pvuln.

 167

Probability the Scan Will Find One or More Vulnerable Hosts (PVULN) vs.

Average Number of Vulnerable Hosts Found by the Scanner (CVULN)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

average number of vulnerable hosts found (CVULN)

p
ro

b
a

b
ili

ty
 t
h

e
 s

c
a

n
 w

ill
 f
in

d

o
n

e
 o

r
m

o
re

 v
u

ln
e

ra
b

le
 h

o
s
ts

 (
P

V
U

L
N
)

sim. run 'A'

sim run 'B'

sim. run 'C'

calc. using Poisson dist.

Figure 5.1.2.2.2-3 : Simulation results vs. analytical models for Pvuln

Table 5.1.2.2.2-1 : Summary of comparison using ABS(Pvuln_C_S_sim - Pvuln_C_S_rate)

minimum maximum average standard deviation

0.000 0.030 0.006 0.006

5.1.2.3 Summary

This section described a simulation that was used to verify the rate-based models. A

web-server TCP ping-scan was simulated. Three different network-scan scenarios were

modeled. For each of these scenarios, both the simulation and rate-based models were used

to calculate the Net-Chaff outcomes: C̄, C̄AFF, C̄VULN, and Pvuln.

 168

The results from the rate-based model and simulation were compared by measuring

the differences between them. For the purpose of Net-Chaff planning, the average

differences were extremely small, and even the maximum differences were small. Thus the

simulation results serve to corroborate the rate-based model’s calculation of the Net-Chaff

outcomes.

5.1.3 Hiding analysis

Net-Chaff hides real computers from scanners. This section analyzes Net-Chaff from

the perspective of the hiding model presented in chapter 3. The model is used to understand

the role of hiding in Net-Chaff’s functionality and performance. From the perspective of the

hiding model, hackers’ scanning can be viewed as a discovery process, and Net-Chaff hides

real systems by defeating this process. Net-Chaff uses both deceptive and non-deceptive

hiding, and both are analyzed.

Ultimately, Net-Chaff uses hiding to achieve its tactical objectives. Net-Chaff’s

primary uses of hiding include: 1) scan containment is used to hide real systems from scans,

2) impersonations are used to hide real systems from information-retrieval scans, and 3) Net-

Chaff’s deceptions are hidden, to counter hackers’ counter-deception. These uses of hiding

involve one or more hiding techniques.

In the following subsections, each of these uses of hiding is analyzed. The hiding

model is used to categorize each of the hiding techniques according to how it defeats the

hacker’s discovery process. References to the model’s categories are in italics. As described

in the model, a hiding technique can affect multiple elements of the discovery process, so it

could be placed in multiple categories. For each hiding technique, only its primary affect is

categorized.

5.1.3.1 Hiding real systems via containment

Net-Chaff’s containment process hides real systems from scanners. The containment

process uses several different hiding techniques. This section analyzes these hiding

techniques from the perspective of the hiding model. These techniques hide real systems by

 169

defeating the scanners’ direct observation. From the perspective of the hiding model, the

scanner is a sensor.

Net-Chaff’s primary hiding technique is the use of routers to block scanners’ access

to the intranet. From the perspective of the hiding model, this hiding technique defeats the

sensor (scanner) by altering the information flows to it.

Net-Chaff also hides real systems by slowing down the scan during the containment

time. Specifically, Net-Chaff reduces the rate at which vulnerable computers are probed, i.e.,

the number of vulnerable computers probed per second. This rate is calculated as (x̄ * r̄vuln),

as described earlier with equation (22) (page 133). Thus, decreasing either factor, x̄ or r̄vuln,

serves to hide real systems.

Net-Chaff’s low-level impersonations are used to decrease x̄ (as described in section

5.1.1.4.2 on page 138). The factor r̄vuln is decreased by configuring the network so that it has

a relatively large number of unused addresses (as described in section 5.1.1.4.3 on page 147).

Both of these hiding techniques defeat the sensor (scanner). They do so by altering the

environment of the hidden item, by creating noise in the environment.

Reducing Net-Chaff’s containment time also serves to hide real systems (as described

in section 5.1.1.4.1 on page 133). This hiding technique serves to defeat the sensor

(scanner). It diminishes the target’s sensor capabilities, by reducing the target’s time

available for observation.

5.1.3.2 Hiding real systems via false positives

Net-Chaff’s impersonations also help to hide real computers from information-

retrieval scans (as described in section 5.1.1.3.1 on page 120). In the scan results, the real

computers can be hidden by the voluminous false positives created by Net-Chaff’s

impersonations. How this hiding technique works depends upon the type of scan results and

how they are used by the hacker. A typical example is given.

A hacker uses a TCP ping-scan to find web servers. The scan returns ten network

 170

addresses that respond affirmatively to the ping scan. In reality, nine of the responses are

impersonations. If the scan results are printed and perused by a hacker, he cannot distinguish

the real web-server from the impersonations. From the perspective of the hiding model, the

hacker uses the scanner for direct observation. In this case, the hacker’s direct observation is

defeated by defeating his recognition of the real web-server. More specifically, the hacker’s

recognition is defeated by the impersonations which alter the information flows to the

sensor.

5.1.3.3 Preventing counter-deception

Net-Chaff must hide indicators that allow scanners to prematurely discover

impersonations and the unused portions of the network. The hiding model can be used to

understand how Net-Chaff can hide these things. These issues were discussed with the Net-

Chaff system design in chapter 4. To recap, the hacker cannot directly observe Net-Chaff, but

he can potentially discover Net-Chaff by investigation. From the perspective of the hiding

model, Net-Chaff is hidden by defeating the hacker’s investigation process. Specifically,

Net-Chaff is hidden by not creating the evidence that the hacker needs for Net-Chaff

detection. This is accomplished by making the impersonations adequately realistic. The

degree of realism needed depends on the scanners’ detection capabilities, and also, cost-

benefit constraints. Examples are provided in chapter 4.

5.1.3.4 Summary

Ultimately, Net-Chaff uses hiding to achieve its tactical objectives. The hiding model

was used to analyze Net-Chaff’s uses of hiding, as well as its hiding techniques. Net-Chaff’s

primary uses of hiding include: 1) scan containment is used to hide real systems from scans,

2) impersonations are used to hide real systems from information-retrieval scans, and 3) Net-

Chaff’s deceptions are hidden, to counter hackers’ counter-deception. These uses of hiding

serve distinct and different purposes. The containment process is noteworthy, as it uses

several different hiding techniques.

The hiding analysis reveals the role of hiding in Net-Chaff’s functionality and

performance. These findings are incorporated in the Net-Chaff system design, and the Net-

 171

Chaff performance analysis. Citations were given for the places in the dissertation where the

findings are incorporated.

5.1.4 Limitations

This section analyzes the limitations of the Net-Chaff system. It also analyzes the

limitations of the Net-Chaff evaluation. The dissertation’s Net-Chaff research, itself, has

limitations. The scope of the research is limited to the design and evaluation of the Net-

Chaff architecture. The results indicate that Net-Chaff can effectively detect and contain

scans. However, additional research is needed to further assess Net-Chaff’s viability. This

additional research will be discussed in the next section, which addresses Net-Chaff’s future

research.

• Limitations of the Net-Chaff system:

For the Net-Chaff system, there are limitations in the functions it provides and in the

types of networks it protects. Net-Chaff’s primary functions are to detect and block scans. A

limitation of Net-Chaff’s surveillance capabilities is that it only sees traffic sent to the unused

addresses that it manages. It does not see traffic sent to computers on the intranet, nor traffic

sent from the intranet to other networks. Net-Chaff is limited to detecting active scans that

access a sufficient number of unused addresses. Active scans that avoid unused addresses

will not be detected. An example is the scan of an address range that is densely populated by

computers, such as the lower addresses of a subnet. Net-Chaff cannot detect passive

scanning. Another limitation of Net-Chaff’s detection capabilities is the possibility of false

positives from benign scans. To prevent false positives, Net-Chaff must be provided with

signatures that identify benign scans, e.g., their source addresses. A limitation of Net-Chaff’s

blocking function is that it blocks whole subnets, rather than just scan traffic. This limitation

is related to Net-Chaff’s solution for scan probes with spoofed source addresses. Less

disruptive blocking systems are possible, but left for future research.

Another limitation of Net-Chaff is the types of networks it can protect. The network

requirements for using Net-Chaff were specified in chapter 4. To use Net-Chaff, a network

must already meet these requirements, or it must be modified to meet them. Some of these

 172

requirements significantly limit the types of networks that can use Net-Chaff. In particular,

Net-Chaff is used on secured intranets in which scans can be accurately identified amidst the

traffic to unused addresses. Also, for containment to work, the intranet routers must support

the blocking function, and the consequences of automated containment must be acceptable.

Another limitation is that Net-Chaff requires a large number of unused addresses, and it must

be possible to route their traffic to the Net-Chaff servers. Further, the network’s used subnets

need to be tactically distributed among the unused subnets. The Net-Chaff performance

analysis shows the network parameters that affect Net-Chaff’s performance (see section

5.1.1.4). These parameters determine Net-Chaff’s suitability for a particular network. For

instance, Net-Chaff is only suitable for networks in which the scan bandwidth is sufficiently

low and the number of unused addresses sufficiently high. As an example, Net-Chaff may

not be useful on a class B network that can be scanned at a rate of 1 Gbps.

There are also limitations related to Net-Chaff’s installation and on-going operations.

Installing Net-Chaff may require modifying the network, so that Net-Chaff can be used

effectively, as just discussed. Installing a Net-Chaff LAN server at each, or many, LANs can

be costly. Also, the Net-Chaff installation requires configuring intranet routers to perform

several essential tasks: routing traffic to the Net-Chaff WAN server, blocking scans, and

dropping packets with spoofed source addresses. Maintaining the router configurations will

be an on-going administration task.

• Limitations of the Net-Chaff evaluation

The Net-Chaff evaluation uses analytical models and a simulation, and their primary

limitations are examined. Net-Chaff’s performance is dependent upon specific attributes of

networks and scans, so Net-Chaff’s performance analysis must be for specific network

topologies and types of scans. Consequently, the Net-Chaff evaluation was limited to a small

number of typical networks and typical scans. However, the analytical models can be

applied to other types of networks and scans.

There were limitations in the scan functions that were modeled. The Net-Chaff

analysis only considered random address selection. Scanners use several other types of

address selection techniques, as described in chapter 4. Sequential address selection was not

 173

analyzed, but it is highly relevant, as networks can have sizable addresses-ranges that are

densely populated by computers. In addition, the Net-Chaff analysis only considered a single

scanner. However, the single-scanner model can be extended to analyze multiple scanners.

There are noteworthy limitations in the analytical models and simulation, themselves.

A major limitation is that their accuracy cannot yet be tested relative to actual Net-Chaff

deployments. Consequently, their accuracy is only as good as their untested assumptions. A

limitation of the analytical models is that their results are average values that apply in the

limit for an infinite number of scans. Consequently, the models do not calculate the outcome

for an individual scan, nor for a small number of scans. There is a limitation in the

simulation’s ability to verify the analytical model. The simulation models a scan whose

probe types all have the same individual probe rate (see section 5.1.1.2.1). Consequently, the

simulation’s verification of the analytical model does not cover cases in which there is

variation in the individual probe rates. There is also a noteworthy limitation in the Net-Chaff

performance analysis. Empirical data on actual blocking times was not available, and this

limits the conclusions that can be drawn regarding Net-Chaff’s effectiveness.

5.1.5 Future research

The dissertation’s Net-Chaff research is limited to the design and evaluation of its

architecture. The results indicate that Net-Chaff can effectively detect and contain scans.

However, there are additional design problems that must be solved before Net-Chaff can be

implemented. Its appears that viable solutions can be found for these design problems, but it

is not entirely certain. Those design problems are described here. In addition, this section

presents several optional features that could be added to enhance Net-Chaff.

Net-Chaff’s use of unused addresses has been described. However, further design is

needed, and there are several problems that must be solved. An intranet routing scheme is

needed for the unused addresses; this requires further investigation and the development of

specific solutions. There are two other systems that address intranet routing for unused

addresses, and their solutions may be useful [Pro04, YBP04]. A solution is also needed for

assigning unused addresses to the Net-Chaff LAN server. honeyd’s scheme of appropriating

 174

addresses with unanswered ARP requests may be problematic [Pro04]; also, compatibility

with DHCP systems is necessary. Another problem that must be addressed is how to best

distribute a network’s unused addresses among the addresses assigned to computers. In

addition, Net-Chaff’s detection mechanism needs to be fully designed. A simple threshold-

based detection mechanism was proposed. However, the detection mechanism must provide

sufficient accuracy for automated containment. It must include capabilities for recognizing

and ignoring benign scans.

Net-Chaff’s servers generate low-level impersonations. Impersonation is a complex

problem and specific solutions must be designed. Analysis is needed to determine what

specific probes will be received and what specific responses will be provided. One of the

most challenging problems is providing responses for probes used for O/S fingerprinting, as

accurately impersonating network stacks could be extremely difficult. Another open problem

is scans that map the network topology, such as traceroute. However, it may be possible to

just drop those scan packets at the intranet routers. Solutions are also needed for an unused

subnet’s impersonation of a used subnet. Chapter 4 discussed counter-deception problems

for this type of impersonation.

In general, scanners’ counter-deception opportunities must be analyzed when

designing the impersonations. Scanner’s counter-deception can include the use of

information sources other than scans. For instance, reverse DNS look-ups could be used to

find a network’s unused addresses. In general, Net-Chaff’s impersonation requirements can

be reduced by using techniques that prevent scanners from obtaining information. For

example, DNS systems can be configured so they do not provide reverse look-ups. Also,

many forms of O/S fingerprinting can be prevented by having routers drop certain ICMP

packets [Ark01].

Further design is needed for the Net-Chaff WAN and LAN servers. This includes

capacity-planning and the processing of incoming and outgoing traffic. The iSink system has

a promising solution for handling large volumes of scan probes and for generating replies

[YBP04]. If the Net-Chaff servers can generate large volumes of replies, then network DoS

problems must be considered. Another Net-Chaff problem is that Net-Chaff LAN servers

 175

are, collectively, expensive to purchase and administer. Future research should consider

alternative solutions that do not require a Net-Chaff device at each LAN, e.g., the use of IP

tunneling on the subnets’ routers. An additional design problem is the specific containment

techniques that will be used. Challenges include supporting different types of routers and

minimizing the blocking time. In general, Net-Chaff’s system-designs should include

defenses for possible scanner countermeasures and hacker attacks.

Net-Chaff was designed mostly from an academic perspective of how networks

should work. Additional investigation is needed to analyze Net-Chaff’s compatibility with a

wide variety of real-world networks, including their design and operations. Some of the

phenomenon that is of interest includes: routing, blocking capabilities, the availability of

unused addresses, potential access-control problems (e.g., firewalls), and vulnerabilities to

counter-deception. Empirical research is also needed to examine the contents of traffic sent

to unused addresses on secured intranets. This is necessary for testing Net-Chaff’s

hypothesis that secure intranets provide an environment where scanning: 1) occurs

infrequently, 2) can be accurately detected, and 3) warrants automated containment.

Empirical data on the performance of typical scans is needed, to make the analysis of Net-

Chaff’s performance more informed and accurate.

The research that was just proposed is intended to refine the design of the Net-Chaff

system that is described in this dissertation. In addition, there are a number of ways to

expand and enhance Net-Chaff’s functionality. The Net-Chaff architecture includes a

surveillance component, and its design is left for future research. Net-Chaff is intended for

use with a particular network topology, and it was specified in chapter 4. It includes LANs,

subnets, intranet routers and a single gateway. Net-Chaff could be extended for use in other

topologies, such as those with multiple gateways, or a single LAN protected by a firewall.

One of the most promising ways to improve Net-Chaff is to use large IPv6 networks and

thereby assign huge numbers of unused addresses to the Net-Chaff servers. There are other

researchers who have observed that the large address space in IPv6 makes scanning very

difficult [ZGT05].

A limitation of the existing Net-Chaff design is its simple threshold-based detection

 176

mechanism. Additional detection mechanisms could be used to speed-up detection and to

improve detection accuracy. There has been much prior research on scan detection

mechanisms, as described in chapter 2, and it may be applicable to Net-Chaff. There are also

limitations in Net-Chaff’s blocking system, and there are a number of ways it can be

improved. The system currently blocks whole subnets, but techniques can be developed to

reduce the scope of blocking to individual addresses, or to a specific types of traffic. Another

way Net-Chaff can be improved is through the use of additional delaying techniques,

including the “tar pits” described in chapter 4.

5.1.6 Summary of the Net-Chaff analysis

This section summarizes the Net-Chaff analysis. Net-Chaff’s performance objectives

were presented in chapter 4, and they include its tactical objectives and its deception and

hiding objectives. The Net-Chaff analysis addresses a subset of these objectives:

• Net-Chaff’s ultimate objectives are to reduce the scanner’s access to the network, and

especially access to high-valued and vulnerable systems. The primary metric is the

number of vulnerable computers accessed by the scanner, before the scan is contained.

• Net-Chaff uses deception and hiding to achieve its tactical objectives. The Net-Chaff

analysis focuses on Net-Chaff’s primary uses of deception and hiding. They include: 1)

the use of low-level deceptions and large numbers of unused addresses, for slowing-down

scans, and 2) the use of low-level deceptions to provide false positives that reduce the

usefulness of the scan results.

Section 5.1.1 (page 96) presented a set of analytical models for estimating Net-

Chaff’s performance and for analyzing its use of deception. The models are based on the

scanners' probe rates, so they are referred to as the rate-based models. The primary metric is

stated as:

C̄VULN the average number of vulnerable computers that are accessed, prior to

containment

 177

The primary equation is:

C̄VULN = ([b * x̄] + [z / r̄nc]) * r̄vuln (41)

Section 5.1.2 (page 152) presented a simulation that was used to verify the rate-based

models, and the subsection 5.1.2.3 (page 167) summarizes this work. The simulation results

were very similar to the results from the rate-based models, and the similarity corroborates

the rate-based models.

The rate-based models were used to analyze Net-Chaff’s performance and its use of

deception. The analysis is summarized here:

• Performance overview:

Section 5.1.1.3 (page 119) gave an overview of Net-Chaff’s performance, and

subsection 5.1.1.3.3 (page 132) summarizes this analysis. Overall, Net-Chaff appears to be

an effective technique for stopping many typical scans, on many typical networks. Net-Chaff

even appears effective for preventing worms from spreading.

• Elements of Net-Chaff performance:

Section 5.1.1.4 (page 133) analyzed the parameters that affect Net-Chaff’s

performance. The analysis is intended for use in configuring Net-Chaff for effective

performance. Also analyzed was Net-Chaff’s use of deception, and deception’s contribution

to Net-Chaff’s performance. The subsection 5.1.1.4.4 (page 149) provides a summary.

One of the best ways to improve Net-Chaff performance is to increase the size of the

address space, and assign all of the new addresses to Net-Chaff. This reduces C̄VULN in three

ways: 1) it typically reduces scanners’ average network probe rate (x̄), 2) it always increases

the fraction of network addresses that are monitored by Net-Chaff (r̄nc), and 3) it always

decreases the fraction of network addresses with vulnerable computers (r̄vuln).

Net-Chaff’s low-level impersonations reduce C̄VULN by slowing down scans, i.e., by

decreasing x̄ in equation (41). The fraction of network addresses that use Net-Chaff

 178

impersonations is represented as r̄nc_imp. x̄ can be decreased by increasing r̄nc_imp. However,

beyond a certain point, increasing r̄nc_imp can not only risk counterdeception, but it may also

provide relatively little reduction in C̄VULN.

C̄VULN is proportional to r̄vuln, as shown by equation (41). When a network has a large

number of unused addresses, relative to the number of vulnerable computers, then the unused

addresses serve to hide the vulnerable computers. This is the passive hiding that was

described in Chapter 4. In equation (41), r̄vuln represents passive hiding’s affect on C̄VULN.

• Taxonomy of probe response types:

In practice, a network may use deceptions other than Net-Chaff, to thwart scans. An

example is a firewall that replies to scans with false ICMP messages stating the target is

unreachable. Section 5.1.1.5 (page 150) describes some of the common forms of these

deceptions. It also describes how the rate-based models can be extended to analyze the

affects of these deceptions.

The hiding model was also used to analyze Net-Chaff’s performance, and its use of

deception. In summary, Net-Chaff’s primary uses of hiding include: 1) its containment

process, 2) the use of impersonations to hide real systems from information-retrieval scans,

and 3) hiding Net-Chaff’s deceptions, to counter hackers’ counter-deception.

Finally, the Net-Chaff evaluation includes analysis of Net-Chaff’s limitations, and

also, topics for future research. The Net-Chaff system’s primary limitations include: 1) its

intrusive use of the network’s address space and routers, and 2) potential problems from

automated containment, including false positives and blocking whole subnets. The primary

limitations of the Net-Chaff research include: 1) its untested hypothesis regarding secured

intranet routers and the opportunity they present for accurately detecting scans, and 2)

remaining design work is needed in order to better assess Net-Chaff’s viability.

5.2 Honeyfiles

Extensive validation work was performed for the Honeyfiles system. That work is

 179

described in the Honeyfiles conference paper [YZD04], which is included in the appendix.

The paper also has a section on the limitations of the Honeyfiles system. The paper gives a

synopsis of the validation work. A more thorough description of the validation work is

beyond the scope of this dissertation.

5.3 Deception process models

This section presents the evaluation performed for the deception process-models: the

deception-operations model and the hiding model (presented in chapter 3). The evaluation is

an informal case-study that is based on use of the models in developing and evaluating the

Net-Chaff and Honeyfiles systems. The systems are presented in chapter 4, and the

evaluation in chapter 5. The evaluation is informal in that it is based on the dissertation

author’s experience in using the models. Also, the analysis is limited to reporting the most

noteworthy findings. For each model, parts of it were not used with the two systems, so the

evaluation is limited to the parts that were used.

For each process-model, its use with each system is evaluated separately. In

particular, separate evaluations are made for the use of the deception-operation model with

the Honeyfiles system and the Net-Chaff system. An evaluation is made for the use of the

hiding model with the Net-Chaff system. The hiding model was not used with the

Honeyfiles system. The models are evaluated relative to their purpose of aiding deception

planning. Each evaluation examines and reports the following: 1) how the model was used,

2) the model’s usefulness (i.e., validation), 3) the model’s correctness (i.e., verification
22

),

and in particular, its self-consistency and veracity, 4) the parts of the model that were not

used, and thus not evaluated, 4) ways to improve the model, and 5) the model’s limitations.

• Deception-operations model:

The deception-operations model was used with Net-Chaff, to create, design and

evaluate the system. The model was not only useful, but essential, in developing Net-Chaff.

The model inspired the Net-Chaff design. The model reveals that the deception target’s

intelligence process is a key element of deception operations: the target’s intelligence

 180

process can be used to reliably convey the deception to the target, and also, the target’s

intelligence process can be defeated by deception. Applying this to computer security led to

the observations that: 1) hackers’ scans can be easily deceived, 2) deception can have a

predictable and reliable effect on scans, and 3) that deception could help in containing scans.

The model also reveals the importance of minimizing falsehood in deception operations.

This principle inspired the design of Net-Chaff’s low-level impersonations.

The deception-operations model guided the Net-Chaff design process, and was key in

understanding how to effectively use deception. The model of the overall deception process

provided a very useful understanding of the deception-operation’s lifecycle. The model’s

deception objective was indispensable for identifying Net-Chaff’s specific uses of deception,

and in using the deceptions effectively. The Net-Chaff system is described in chapter 4, and

it includes a section on Net-Chaff’s deception objectives. The model also played a critical

role in evaluating Net-Chaff. The deception objectives revealed what to evaluate in assessing

Net-Chaff’s performance and the effectiveness of its deceptions.

Almost all of the deception-operations model is applicable to Net-Chaff. Only a

small part of it was not relevant, and an example is the process for terminating deception

operations. No errors were found in the model. However, a discovery was made that

improves the model. Each deception objective should include a description of the tactical or

strategic objectives it serves, and how it serves them. This was done with the Net-Chaff

design, in its sections on tactical and deception objectives. The primary limitation of the

deception-operations model is that it has not been used extensively, and its primary author

does not have extensive experience with computer-security deception operations. Additional

use of the model is needed to further test and improve it.

The deception-operations model was also used to design and evaluate the Honeyfiles

system. That use of the model was very similar to what was just described for Net-Chaff.

One exception is that the model did not inspire the creation of the Honeyfiles system, as that

22

 Boehm elaborates on the distinction between validation and verification [Boe84].

 181

occurred before the model was built. The model was especially helpful in understanding

how to deploy individual honeyfiles. For instance, an understanding of hackers’ intelligence

processes is needed to effectively place and name honeyfiles. Also, system users need to

understand their honeyfiles’ deception objective. The model was also helpful in

understanding the advantages of honeyfile deceptions: they are very simple, use little

falsehood, have almost no risk, and the system provides good feedback.

The Honeyfiles system was evaluated by deploying a prototype of it on a honeynet.

The deception-operations model played a key role in designing the honeynet, and especially

in designing the deception story. Three computer-security students were recruited to hack

the honeynet. Their hacking was observed, and they were each interviewed. The interviews

revealed that key parts of the deception story were not received by the hackers. The

deception-operations model was useful in understanding why this part of the deception

operation failed. The failure also revealed a limitation of the model. The model lacks

guidance regarding specific techniques that tend to work, and not work, based upon

experience. Providing such guidance would significantly enhance the model’s usefulness.

• Hiding model:

The hiding model is a taxonomy, and it was used to categorize the five hiding

techniques used by Net-Chaff. That analysis and categorization is documented in a section

within the Net-Chaff evaluation, in chapter 5. The purpose of that categorization was to test

the hiding model, and to better understand Net-Chaff’s use of hiding. The categorization was

performed after Net-Chaff was designed, and after Net-Chaff’s analytical models and

simulation were completed. Therefore, the categorization was not applied to that work.

To use the hiding model, it was first necessary to identify the hiding techniques. This

was the most useful information obtained. In categorizing the hiding techniques, the higher-

level categories were the most informative. For example, hiding Net-Chaff from counter-

deception involves defeating scanners’ discovery process of investigation. Overall, the

hiding model provided useful information about Net-Chaff’s hiding techniques, but not

essential information.

 182

The categorization process was tedious and challenging. The categories were

adequately defined, but some of the hiding techniques were not easy to categorize. For

instance, one hiding technique that was difficult to categorize is Net-Chaff’s use of a large

number of unused addresses to reduce r̄vuln. Most of the difficulties in categorization may be

due to the nature of the problem—such analysis can simply be difficult. However, some of

the hiding model’s low-level categories probably need additional clarification. Each of the

five hiding techniques belongs to a different low-level category. The model has 26 low-level

categories, so only a small fraction of them were used and evaluated. Additional use and

evaluation of the hiding model is needed. Another intended application of the hiding model

is in discovering new or alternative hiding techniques. This application of the model may

prove to be more useful then applying the model to categorize known deception techniques,

as was done for Net-Chaff.

• Summary:

This section presents the evaluation performed for the deception process-models. The

evaluation is an informal case-study. The deception-operation model was extremely useful

for creating, designing and evaluating the Net-Chaff and Honeyfiles systems. The most

important parts of the model were found to be: 1) the model of the overall deception process,

2) the deception objective, 3) the role of the target’s intelligence process, and 4) minimizing

falsehood. The primary limitation of the deception-operations model is that it has not been

used extensively.

The hiding model was used to categorize and analyze Net-Chaff’s five hiding

techniques. The model of discovery by investigation was very helpful in understanding one

of the hiding techniques in particular. Although this was a very limited case-study, it

indicates that the model could be useful for understanding how particular hiding techniques

work. Additional use of the model is needed to further evaluate it.

 183

6 Conclusion

This dissertation is concerned with the processes, principles and techniques that are

involved in deception-operations for computer security. After years of research and

development, computer security remains an error-prone task and, in some respects, perhaps a

loosing battle. Computer security’s chronic problems call for wholly new approaches.

Deception works in a fundamentally different way than conventional security. Conventional

security tends to work directly with the hacker’s actions, e.g., to prevent them or to detect

them. Deception manipulates the hacker’s thinking to make him act in a way that is

advantageous to the defender. Being fundamentally different, deception can be strong where

conventional security is weak.

6.1 Main contributions of this work

In computer security, relatively little has been done to systematically model and

examine deception operations. This work addresses these issues by focusing on deception for

computer-security defense. The four main contributions of this dissertation are:

1) A process model for deception operations: this model, which is based on military

deception theory and practice, provides deception planners with a framework for conducting

deception operations. The framework includes a set of processes, principles and techniques.

The model was extremely useful for creating, designing and evaluating the two novel

approaches to intrusion detection and defense: the Net-Chaff and Honeyfiles systems. The

most important parts of the model are: 1) the model of the overall deception process, 2) the

deception objective, 3) the role of the target’s intelligence process, and 4) the principle of

minimizing falsehood.

2) A process model of deceptive hiding: this model aids the defender in developing

new hiding techniques and in evaluating existing techniques. Deceptive hiding is modeled as

defeating the target’s discovery processes: direct observation, investigation based on

evidence, and learning from others. The hiding model was used to categorize and analyze

 184

Net-Chaff’s five hiding techniques. The model of discovery by investigation was

particularly helpful in understanding one of the hiding techniques. Although this application

of the model was a very limited, it indicates that the model could be useful for understanding

how particular hiding techniques work.

3) Deception-based intrusion detection systems (IDSs): the two deception models

informed the design and evaluation of the two IDS systems. (a) The Net-Chaff system

employs computer-impersonations to detect and contain hacker’s network scans within an

intranet. Net-Chaff’s primary performance objective is to contain scans before they can

access vulnerable computers. The primary advantages of the system are: 1) it is deployed on

a secure intranet where scans are infrequent and warrant containment, 2) a large number of

unused addresses are used to rapidly and accurately detect scans, and to slow down them

down, 3) deception is also used to slow down scans, 4) automated containment.

(b) The Honeyfiles system extends the network file system to provide bait files for

hackers. These files trigger an alarm when opened. The primary advantages of the system

are: 1) honeyfiles can be difficult for hackers to avoid, 2) honeyfiles can detect unauthorized

access gained through unknown attacks, and 3) end-users can create honeyfiles and receive

alarms, and this can make false alarms infrequent and easy to handle.

4) Experiments: (a) the Net-Chaff system was evaluated by using analytical models

and a simulation. The simulation was used to verify the analytical models. The analytical

models were used to evaluate Net-Chaff’s performance. The evaluation included several

typical networks and several typical scans. Worst-case Net-Chaff performance was modeled.

For many typical network and scan scenarios, it appears that Net-Chaff could reliably contain

scans before they access a single vulnerable computer. This would prevent scanning worms

from spreading. The analytical models were also used to examine the parameters that affect

Net-Chaff’s performance. This application of the models can be used to configure Net-Chaff

deployments for good performance.

(b) A prototype of the Honeyfiles system was constructed. The prototype was

 185

deployed on a deceptive network and subjected to hacking. There, the Honeyfiles system

was observed to be an effective means for intrusion detection.

6.2 Limitations of this work

The limitations of the two deception models and the two IDSs are analyzed in chapter

5. A short summary of that analysis is given here:

• The deception models: the primary limitation related to the deception models is the

limited time that was available for this work. This meant that the models have not been

extensively used nor evaluated as one would like.

There are also some practical limitations of the IDS solutions developed.

• Net-Chaff: the Net-Chaff system’s primary limitations include: 1) its intrusive use of

the network’s address space and routers, and 2) potential problems from automated

containment, including false positives and blocking whole subnets. The primary

limitations of the Net-Chaff research include: 1) its untested hypothesis regarding

secured intranet routers and the opportunity they present for accurately detecting scans,

and 2) remaining design work is needed in order to better assess Net-Chaff’s viability.

• Honeyfiles: the Honeyfiles system’s primary limitations include: 1) honeyfiles may not

be viable in file spaces that require regular searching, and 2) honeyfiles require end-user

involvement and skill.

6.3 Future work

Future work for the two deception models and the two IDSs is summarized here.

This work will address some of the limitations identified in the previous section, and it will

also explore new avenues related to deception-based IDSs:

• The deception models: additional use and evaluation of both models is needed. Further,

the deception-operations model lacks guidance regarding specific techniques that tend to

work, and not work, based upon experience. Providing such guidance would

 186

significantly enhance the model’s usefulness. Future work for the hiding model is

discussed in chapter 3. One topic for future research is extending the discovery-process

models to deceptive showing. In this case, the discovery process would be manipulated

to portray something false.

• Net-Chaff: its future work is discussed in chapter 5. Most important is the design

problems that must be solved before Net-Chaff can be implemented. Its appears that

viable solutions can be found for these design problems, but it is not entirely certain.

Two such design problems are an intranet routing scheme for the unused addresses, and

specific impersonation solutions. Also, investigation is needed to analyze Net-Chaff’s

compatibility with a wide variety of real-world networks, including their design and

operations.

• Honeyfiles: the Honeyfiles system needs to be more fully implemented, and then

deployed on real networks where it can be evaluated.

 187

7 Bibliography
Note: unless stated otherwise, all URLs were verified on, or before, May 2006.

[Ark99] Arkin, O. “Network Scanning Techniques, Version 1.0”, The Sys-Security Group,

http://www.sys-security.com/index.php?page=papers, 1999.

[Ark01] Arkin, O. “ICMP Usage in Scanning – The Complete Know How, Version 3.0”,

The Sys-Security Group, http://www.sys-security.com/index.php?page=papers, 2001.

[Ark05] Arkin, O. “On the Deficiencies of Active Network Discovery Systems”, white

paper, Insightix, http://www.insightix.com/resources-currentwhitepaper.aspx, 2005.

[Bal04] Balas, E. “Honeynet Data Analysis: A Technique for Correlating Sebek and

Network Data”, Digital Forensic Research Workshop (DFRWS),

http://www.dfrws.org/bios/day2/Balas_Honeynets_for_DF.pdf, August 2004.

[Bar52] Barkas, G. The Camouflage Story, Cassell & Co. Ltd, 1952.

[Bar95] Baker, F. “RFC 1812 - Requirements for IP Version 4 Routers”, Network Working

Group, IETF, 1995.

[Bec01] Beck, R. “Passive-aggressive resistance: OS fingerprint evasion”, Linux Journal,

2001(89), http://www.linuxjournal.com/issue/89, September 2001.

[BFP03] Beale, J., J. Foster, and J. Posluns. Snort 2.0 Intrusion Detection, Syngress

Publishing, Inc. 2003.

[Boe84] Boehm, B. “Verifying and validating software requirements and design

specifications”, IEEE Software, 1(1):75-88, January 1984.

[BW82] Bell, J., B. Whaley. Cheating and Deception. Transaction Publishers, 1982.

[CDF04] Carella, C., J. Dike, N. Fox, and M. Ryan, “UML Extensions for Honeypots in the

ISTS Distributed Honeypot Project”, Proceedings of the 2004 IEEE Workshop on

Information Assurance, pp. 130-137, West Point, New York,

http://www.ists.dartmouth.edu/library/honeypots/uml0604.pdf, June 2004.

[CER99] “CERT Advisory CA-1999-13 Multiple Vulnerabilities in WU-FTPD”, CERT/CC,

http://www.cert.org/advisories/CA-1999-13.html, November 9, 1999.

[CGK03] Z. Chen, L. Gao, and K. Kwiat, “Modeling the Spread of Active Worms",

Proceedings of the IEEE INFOCOMM, vol. 3, pp. 1890-1900, 2003.

 188

[Cha04a] Charles, K. “Decoy Systems: A New Player in Network Security and Computer

Incident Response”, International Journal of Digital Evidence, 2(3),

http://www.ijde.org/docs/04_winter_v2i3_art3.pdf, Winter 2004.

[Cha04b] Chamales, G. “The Honeywall CD-ROM”, IEEE Security & Privacy Magazine,

2(2):77-79, Mar-Apr 2004.

[Che92] Cheswick, B. "An evening with Berferd: In which a cracker is lured, endured and

studied," Proceedings of the Winter USENIX Conference, pp. 163-174, January 1992.

[Chu03] Chuvakin, A. “Days of the Honeynet: Attacks, Tools, Incidents”,

LinuxSecurity.com, http://www.linuxsecurity.com, April 22, 2003.

[CIA80] Deception Maxims: Fact and Folklore, Deception Research Program, Office of

Research and Development, Central Intelligence Agency, 1980.

[CIS01] “Network Security: An Executive Overview”, Cisco Systems, no longer on-line,

available on request from the dissertation author, 2001.

[CIS04] Catalyst 6500 Series Switch Software Configuration Guide—Release 8.4, Cisco

Systems, 2004.

[Cla32] von Clausewitz, C. On War, Princeton University Press, 1832.

[CLP01] Cohen, F., D. Lambert, C. Preston, et al. “A Framework for Deception”, Internet

published, http://www.all.net/journal/deception/Framework/Framework.html, July 2001.

[CMS01] Cohen, F., I. Marin, J. Sappington, C. Stewart, E. Thomas. “Red Teaming

Experiments with Deception Technologies”, internet-published manuscript,

http://all.net/journal/deception/experiments/experiments.html, November 2001.

[Coh98] Cohen, F. "A Note on the Role of Deception in Information Protection",

Computers & Security, 17(1998):483-506, 1998.

[Coh00] Cohen, F. “A Mathematical Structure of Simple Defensive Network Deceptions”,

Computers & Security, 19(2000):520-528,

http://www.all.net/journal/deception/mathdeception/mathdeception.html, August 2000.

[Cor04] Corey, J. “Advanced Honeypot Identification and Exploitation”, Phrack, Phrack

Inc., 0x0b(0x3f), http://www.phrack.org/fakes/p63/p63-0x09.txt, January 2004.

[CR05] Chen, S. and S. Ranka. “Detecting Internet Worms at Early Stage”, IEEE Journal on

Selected Areas in Communications, 23(10):2003-2012, October 2005.

[Dev91] Devore, J. Probability and Statistics for Engineering and the Sciences,

Brooks/Cole Publishing Company, 1991.

 189

[Dew89] Dewar, M. The Art of Deception in Warfare, David & Charles, 1989.

[DH82a] Daniel, D., K. Herbig, editors. Strategic Military Deception, Pergamon Press,

1982.

[DH82b] Daniel, D., K. Herbig. “Propositions on Military Deception”, in [DH82a].

[DHK04] Dornseif, M., T. Holz, and C. Klein, “NoSEBrEaK - Attacking Honeynets”,

Proceedings of the 2004 IEEE Workshop on Information Assurance and Security, West

Point, NY, http://md.hudora.de/publications/2004-NoSEBrEaK.pdf, pp. 1-7, June 2004.

[DJK01] Dickerson, J., J. Juslin, and O. Koukousoula. “Fuzzy Intrusion Detection”,

Proceedings of the IFSA World Congress and 20th NAFIPS International Conference,

2001, pp. 1506-1510, 2001.

[DQG04] Dagon, D., X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levine, and H. Owen.

”Honeystat: Local Worm Detection Using Honeypots”, Proceedings of the 7
th

Symposium on Recent Advances in Intrusion Detection (RAID), September 2004.

[DS06] DShield.org, http://www.dshield.org, link active in October 2006.

[FA04] Foo, S. and M. Arradondo. “Mobile Agents for Computer Intrusion Detection”,

Proceedings of the Thirty-Sixth Southeastern Symposium on System Theory, 2004, pp.

517-521, 2004.

[Fis04] Fischbach, N. “Building an Early Warning System in a Service Provider Network”,

Black Hat Briefings Europe 2004, http://www.blackhat.com/presentations/bh-europe-

04/bh-eu-04-fischbach-up.pdf, May 2004.

[FM97] Freedman, D.H. and C.C. Mann. At Large: The Strange Case of the World's Biggest

Internet Invasion, Simon & Schuster, 1997.

[FN95] Fowler, C., R. Nesbit. “Tactical Deception in Air-Land Warfare”, Journal of

Electronic Defense, 18(6):37-44, June 1995.

[For04a] ForeScout. “WormScout Anti-Worm Solution”, ForeScout Technologies Inc., San

Mateo, CA, 2004.

[For04b] ForeScout, “ActiveResponse : Theory of Operations”, ForeScout Technologies

Inc., San Mateo, CA, 2004.

[Fyo97] Fyodor. “The Art of Port Scanning”, Phrack Magazine, 7(51), September 1997.

[Fyo02] Fyodor. “Remote OS detection via TCP/IP Stack FingerPrinting”, Internet

published, Insecure.Org, , http://www.insecure.org/nmap/nmap-fingerprinting-

article.html, 2002.

 190

[Fyo04] Fyodor. “Nmap Reference Guide (Man Page)”, Insecure.Org,

http://www.insecure.org/nmap/man, 2004.

[Gof02] Brian Goff, "Distributed Resource Monitoring Tool and its Use in Security and

Quality of Service Evaluation,” NC State University M.S. Thesis, 2002.

[Góm04] Gómez, D., “Installing a Virtual Honeywall using VMware”, Spanish Honeynet

Project, Internet published, http://www.honeynet.org.es/papers/vhwall/, September 2004.

 [GS98] Goldsmith, D., M. Schiffman. “Firewalking : A Traceroute-Like Analysis of IP

Packet Responses to Determine Gateway Access”, Internet published,

http://www.packetfactory.net/projects/firewalk, October 1998.

[GSX04] Gu, G., M. Sharif, Q. Xinzhou, D. Dagon, W. Lee, and G. Riley. “Worm

Detection, Early Warning and Response Based on Local Victim Information”,

Proceedings of the 20th Annual Computer Security Applications Conference

(ACSAC'04), pp. 136-145, 2004.

[GZC06] Gao, Y., L. Zhichun, and Y. Chen. “A DoS Resilient Flow-level Intrusion

Detection Approach for High-speed Networks”, Proceedings of the 26th IEEE

International Conference on Distributed Computing Systems, 2006, pp. 39-39, 2006.

[HA05] Harrop, W., and G. Armitage. “Defining and Evaluating Greynets (Sparse

Darknets)”, Proceedings of The IEEE Conference on Local Computer Networks 30th

Anniversary. pp. 344- 350, 2005.

[Han85] Handel, M. Military Deception in Peace and War, Magnes Press, 1985.

[HC04] Hsu, F.-H and T. Chiueh. “CTCP: a Transparent Centralized TCP/IP Architecture

for Network Security”, Proceedings of the 20th Annual Computer Security Applications

Conference, 2004, pp. 335-344, 2004.

[HCL06] Huang. C., K. Chen, and C. Lei. “Mitigating Active Attacks Towards Client

Networks Using the Bitmap Filter”, Proceedings of the International Conference on

Dependable Systems and Networks, 2006, pp. 403-412, 2006.

[Heu81] Heuer, R. “Cognitive Factors in Deception and Counterdeception”, in [DH82a].

[HMG03] Hines, W., D. Montgomery, D. Goldsman, C. Borror. Probability and Statistics

in Engineering, Wiley, 2003.

[Hoe04] Hoepers, C. “Honeynets and Honeypots: Companion Technology for Detection

and Response”, AusCERT Conference, http://www.honeynet.org.br/presentations/hnbr-

AusCERT2004.pdf, May 2004.

[Hon05] Honeyd web site, http://www.honeyd.org, 2005.

 191

[How98] Howard, J. An Analysis of Security Incidents on the Internet : 1989-1995, PhD

dissertation, Carnegie Mellon University, August 1998.

[HP04] Know Your Enemy : Learning about Security Threats (2nd Edition), The Honeynet

Project, Addison-Wesley Professional, 2004.

[Hut04] Hutchinson, W. “The Role of Deception in Information Operations. From

Information Warfare to Information Operations”, Proceedings of the 5th Australian

Information Warfare and Security Conference, pp.76-83, Perth, November 2004.

[HW00] Hutchinson, W., Warren, M. “The use of deception in systems”, International

Conference on Systems Thinking in Management, Geelong, Australia, 2000.

[HW01] Hutchinson, W., Warren, M. “The Nature of Data: Illusions of Reality”, Informing

Science Conference, Challenges to Informing Clients: A Transdisciplinary Approach,

Krakow, Poland,

http://proceedings.informingscience.org/IS2001Proceedings/pdf/HutchinsonEBKTheNa.

pdf, June 2001.

[HW02] Hutchinson, W., Warren, M. “Truth, lies, reality, and deception: an issue for

electronic commerce”, International Journal of Services Technology and Management,

3(2):208-221, 2002.

[ISC06] Internet Storm Center, http://isc.sans.org/, link active on October, 2006.

[Jai91] Jain, R. The Art of Computer Systems Performance Analysis, John Wiley & Sons,

1991.

[JDD96] Joint Doctrine Division, Joint Doctrine for Military Deception, U.S. Joint

Command, http://www.dtic.mil/doctrine, 1996.

[JDD01] Joint Doctrine Division, DOD Dictionary of Military and Associated Terms, U.S.

Joint Command, http://www.dtic.mil/doctrine/jel/doddict/index.html, 2001.

[JLG04] Jackson, T., J. Levine, J. Grizzard, and H. Owen. “An Investigation of a

Compromised Host on a Honeynet Being Used to Increase the Security of a Large

Enterprise Network”, Proceedings of the 2004 IEEE Workshop on Information

Assurance, pp. 9-15, West Point, New York,

http://users.ece.gatech.edu/~owen/Research/Conference%20Publications/Jackson_IAW2

004.pdf, June 2004.

[JPB04] Jung, J., V. Paxson, A. Berger, and H. Balakrishman. “Fast Portscan Detection

Using Sequential Hypothesis Testing”, Proceedings of the IEEE Symposium on Security

and Privacy, pp. 211-225, Oakland, California, 2004.

 192

[Jul02] Julian, D. Delaying-Type Responses for Use by Software Decoys, master’s degree

dissertation, Naval Postgraduate School, September 2002.

[JX04] Jiang, X., and D. Xu. "CyberTrap: Detecting and Quarantining Scanning Worms in

Enterprise Networks", Department of Computer Science Technical Report CSD TR 04-

0xx, Purdue University, August 2004.

[Kra04] Krawetz, N.; “Anti-honeypot technology”, IEEE Security & Privacy Magazine,

2(1):76-79 , Jan.-Feb. 2004.

[LaB05] LaBrea web site, http://labrea.sourceforge.net, 2005.

[LK02] Leckie, C. and R. Kotagiri. “A Probabilistic Approach to Detecting Network

Scans”, Proceedings of the Eighth IEEE Network Operations and Management

Symposium (NOMS 2002), pp. 359-372, 2002.

[LPV04] Levchenko, K., R. Paturi, and G. Varghese. “On the Difficulty of Scalably

Detecting Network Attacks”, Proceedings of the 11th ACM Conference on Computer

and Communications Security, pp. 12-20, 2004.

[MC97] Marine Corps Doctrine Division, MCDP 1-3 Tactics, U.S. Marine Corps, 1997.

[MMB05] Muelder, C., K. Ma, and T. Bartoletti., “A Visualization Methodology for

Characterization of Network Scans”, Proceedings of the IEEE Workshops on

Visualization for Computer Security, 2005.

[Mon78] Montagu, E. Beyond Top Secret Ultra, McCann & Geoghegan, 1978.

[MN06] Mirage Networks, http://www.miragenetworks.com, 2006.

[MP01] Mandia, K. and C. Prosise. Incident Response : Investigating Computer Crime,

Osborne Press, 2001.

[MSK99] McClure, S., J. Scambray, and G. Kurtz. Hacking Exposed : Network Security

Secrets and Solutions. Osborne/McGraw-Hill, 1999.

[MSK03] McClure, S., J. Scambray, and G. Kurtz. Hacking Exposed : Network Security

Secrets and Solutions. Osborne/McGraw-Hill, 2003.

[MSV03] Moore, D., C. Shannon, G. Voelker, and S. Savage. “Internet Quarantine:

Requirements for Containing Self-Propagating Code”, Proceedings of the 2003 IEEE

Infocom Conference, pp. 1901-1910, San Francisco, CA, 2003.

[Mur80] Mure, D. Master of Deception. William Kimber & Co. Ltd, 1980.

 193

[MW03] Michael, J. and T. Wingfield. “Lawful Cyber Decoy Policy”, Proceedings of the

IFIP Eighteenth International Information Security Conference, pp. 483-488, Kluwer

Acad. Publishers, Athens, Greece, May 2003.

[Naz04] Nazario, J. Defense and detection strategies against Internet worms, Artech House,

2004.

[Nes06] The Nessus Project, http://www.nessus.org, link active on October, 2006.

[OL04] d’Orey Posser de Andrade Carbone, M., P. L´ıcio de Geus. “A Mechanism for

Automatic Digital Evidence Collection on High-Interaction Honeypots”, Proceedings of

the 2004 IEEE Workshop on Information Assurance and Security, pp. 1-8, West Point,

NY, http://www.dcc.unicamp.br/~ra002193/honeypots-en.pdf, June 2004.

[Pro04] Provos, N. “A Virtual Honeypot Framework”, Proceedings of the 13th USENIX

Security Symposium, pp. 1-14, USENIX, August, 2004.

[PSN04] Ptacek, T., D. Song, and J. Nazario, “Safe Quarantine: Automated Worm

Suppression”, whitepaper, Arbor Networks, no longer on-line, available on request from

the dissertation author, 2004.

[PYB04] Pang, R., V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson,

“Characteristics of Internet Background Radiation”, Proceedings of the 4th ACM

SIGCOMM Conference on Internet Measurement, pp. 27–40, 2004.

[QH04] Qin, M. and K. Hwang. “Frequent Episode Rules for Internet Anomaly Detection”,

Proceedings of the Third IEEE International Symposium on Network Computing and

Applications, 2004, pp. 161-168, 2004.

[Ras01] Rash, M. “Paranoid Penguin: Detecting Suspect Traffic”, Linux Journal,

2001(91), November 2001.

[Ras04] Rash, M. Psad man page, CipherDyne,

http://www.cipherdyne.com/psad/docs/manpages/psad.html, 2004.

[RBB04] Raynal, F., Y. Berthier, P. Biondi, and D. Kaminsky, “Honeypot forensics”,

Proceedings of the 2004 IEEE Workshop on Information Assurance, pp. 22-29, West

Point, New York, http://www.security-labs.org/PubliSci/IAW04.pdf.gz, June 2004.

[Row05a] Neil C. Rowe, “The Ethics of Deception in Virtual Communities”, this article

appeared in the Encyclopedia of Virtual Communities and Technologies, Hershey, PA:

Idea Group, http://www.cs.nps.navy.mil/people/faculty/rowe/virtcomm161.htm, 2005.

[Row05b] Neil C. Rowe, “Types of Online Deception”, an article in the Encyclopedia of

Virtual Communities and Technologies, Hershey, PA: Idea Group,

http://www.cs.nps.navy.mil/people/faculty/rowe/virtcomm160.htm, 2005.

 194

[Row06] Rowland, C. Sentry Tools, http://sourceforge.net/projects/sentrytools, 2006.

[RR04] Rowe, N. and H. Rothstein, “Two Taxonomies of Deception for Attacks on

Information Systems”, Journal of Information Warfare, 3(2):28 – 40, 2004.

[RSM03] Robertson, S., E. Siegel, M. Miller, and S. Stolfo, “Surveillance Detection in High

Bandwidth Environments”, Proceedings of the DARPA Information Survivability

Conference and Exposition, pp. 130-138, Washington, D.C., 2003.

[Rus02] Russell, R. “Linux 2.4 Packet Filtering HOWTO”, netfilter.org,

http://netfilter.org/documentation/index.html, 2002.

[SBB04] Shah, K., S. Bohacek, and A. Broido. “Feasibility of Detecting TCP-SYN Scanning

at a Backbone Router”, Proceedings of the 2004 American Control Conference, pp. 988-

995, 2004.

[Sch99] Schum, D. “Marshaling Thoughts and Evidence During Fact Investigation”, South

Texas Law Review, 40(2): 401-454, Summer 1999.

[SHM02] Staniford, S., J. Hoagland, and J. McAlerney. “Practical Automated Detection of

Stealthy Portscans”, Journal of Computer Security, 10(1-2):105-136, 2002.

[SJB04] Schechter, S., J. Jung, and A. Berger. “Fast Detection of Scanning Worm

Infections”, Proceedings of the Seventh International Symposium on Recent Advances in

Intrusion Detection, France, September 2004.

[Smi88] Smith, J. “Characterizing Computer Performance with a Single Number”,

Communications of the ACM, 3(10):1202-1206, October 1988.

[Spi02] Spitzner, L. Honeypots: Tracking Hackers, Addison-Wesley Professional, 2003.

[Sto89] Stoll, C. The cuckoo's egg, Doubleday, 1989.

[SYB06] Sridharan, A., T. Ye, and S. Bhattacharyya. “Connectionless Port Scan Detection

on the Backbone”, Proceedings of the 25th IEEE International Performance,

Computing, and Communications Conference, 2006, 10 pp., 2006.

[TB98] Tang, N. and S. Binay, “Netmap: A Network Discovery Tool”, technical report,

Lucent Technologies’ Network & Services Management Research Labs, no longer on-

line, available on request from the dissertation author, 1998.

[Tho02] Thomas, D. Hacker Culture, University of Minnesota Press, 2002.

[TK02] Toth, T. and C. Kruegel, “Connection-History Based Anomaly Detection,”

Proceedings of the IEEE Workshop on Information Assurance and Security, West Point,

NY, June 2002.

 195

[TRB06] Tartakovsky, A., B. Rozovskii, R. Blazek, and H. Kim. “A Novel Approach to

Detection of Intrusions in Computer Networks via Adaptive Sequential and Batch-

Sequential Change-Point Detection Methods”, IEEE Transactions on Signal Processing,

54(9): 3372-3382, September 2006.

[USA78] FM 90-2 Tactical Deception, U.S. Army, 1978.

[USA88] FM 90-2 Battlefield Deception, U.S. Army, 1988.

[USM89] FM 15-6 Strategic and Operational Military Deception: U.S. Marines and the

Next Twenty Years, U.S. Marine Corps, 1989.

[VCI99] Vivo, M., E. Carrasco, G. Isern, and G. Vivo. “A review of port scanning

techniques”, ACM Computer Communications Review, 29(2):41-48, April 1999.

[VVZ02] Vigna, G., F. Valeur, J. Zhou, and R. Kemmerer. “Composable tools for network

discovery and security analysis”, Proceedings of the 18th Annual Computer Security

Applications Conference, pp. 14-24, IEEE Press, 2002.

[Wha82] Whaley, B. “Toward a General Theory of Deception”, The Journal of Strategic

Studies, Frank Cass, London, 5(1):178-192, March 1982.

[Will02] Williamson, M. "Throttling Viruses: Restricting Propagation to Defeat Malicious

Mobile Code," Proceedings of the 18th Annual Computer Security Applications

Conference (ACSAC '02), p. 61, Las Vegas, NV, 2002.

[WKO05] Whyte, D., E. Kranakis, and P. van Oorschot. “DNS-Based Detection of Scanning

Worms in an Enterprise Network”. In Proceedings of the 12th Annual Network and

Distributed System Security Symposium, 2005.

[WLZ06] Webster, S., R. Lippmann, and M. Zissman. “Experience Using Active and

Passive Mapping for Network Situational Awareness”, Proceedings of the Fifth IEEE

International Symposium on Network Computing and Applications, 2006, pp.19-26,

2006.

[WOK05] Whyte, D., P. van Oorschot, and E. Kranakis, “Detecting Intra-Enterprise

Scanning Worms Based on Address Resolution”, Proceedings of the 21st Annual

Computer Security Applications Conference, pp. 371-380, IEEE Computer Society,

2005.

[Wol02] Wolfgang, M. “Host Discovery with nmap”, Internet published,

http://moonpie.org/writings/discovery.pdf, November 2002.

[WSM04] Watson, D., M. Smart, G. Malan and F. Jahanian. “Protocol scrubbing: network

security through transparent flow modification”, IEEE/ACM Transactions on

Networking, 12(2):261-273, April 2004.

 196

[WSP04] Weaver, N., S. Staniford, and V. Paxson. “Very Fast Containment of Scanning

Worms”, Proceedings of the 13th USENIX Security Symposium, pp. 29-44, San Diego,

CA, 2004.

[WVG04] Wu, J., S. Vangala, L. Gao, and K. Kwiat. “An Effective Architecture and

Algorithm for Detecting Worms with Various Scan Techniques”, Proceedings of the

11th Annual Network and Distributed System Security Symposium, NDSS 2004,

February 2004.

[WWJ03] Wei-hua, J., L. Wei-hua and D. Jun. “The application of ICMP protocol in

network scanning”, Proceedings of the Fourth International Conference on Parallel and

Distributed Computing, Applications and Technologies, pp. 904-906, IEEE Press, 2003.

[XDM01] Xiaobing, G., Q. Dlaepei, L. Min, et al. ”Detection and Protection Against

Network Scanning: IEDP”, Proceedings of the 2001 International Conference on

Computer Networks and Mobile Computing, pp. 487-493, 2001.

[YBJ04] Yegneswaran, V., P. Barford, and S. Jha. “Global Intrusion Detection in the

DOMINO Overlay System”, Proceedings of the Network and Distributed System

Security Symposium (NDSS), 2004.

[YBP04] Yegneswaran, V., P. Barford, and D. Plonka. “On the Design and Use of Internet

Sinks for Network Abuse Monitoring”, Proceedings of the 7
th

 Symposium on Recent

Advances in Intrusion Detection (RAID), 2004.

[YBU03] Yegneswaran, Vinod; Barford, Paul; Ullrich, Johannes. ”Internet Intrusions:

Global Characteristics and Prevalence”, in Proceedings of ACM SIGMETRICS, pp. 138-

147, June, 2003.

[YDF06] J.Yuill, D. Denning, and F. Feer, “Using Deception to Hide Things from Hackers:

Processes, Principles, and Techniques”, Journal of Information Warfare, 5(3):26-40,

November, 2006.

[YLM04] Yin, C., M. Li, J. Ma and J. Sun. “Honeypot and scan detection in intrusion

detection system”, Proceedings of the Canadian Conference on Electrical and Computer

Engineering, 2004. 2(2-5):1107-1110, 2004.

[Yua05] Yuan, L. “Companies Face System Attacks From Inside, Too”, The Wall Street

Journal, pg. B.1, June 1, 2005.

[YZD04] Yuill, J., M. Zappe, D. Denning, and F. Feer. “Honeyfiles: Deceptive Files for

Intrusion Detection”, Proceedings of the 2004 IEEE Workshop on Information

Assurance, pp. 116-122, West Point, NY, June 2004.

 197

[ZGT05] Zou, C., W. Gong, D. Towsley, and L. Gao. “The Monitoring and Early Detection

of Internet Worms”, IEEE/ACM Transactions on Networking, 13(5):961-974, October,

2005.

[Zhe04] Erkang Zheng, "Interactive Assistance for Anomaly-Based Intrusion Detection,”

NC State University M.S. Thesis, 2004.

 198

8 Appendix

 199

The Honeyfiles system is described in a conference paper. The paper is reprinted

here, starting on the next page. The paper is copyrighted, and it is reprinted here by

permission. The paper’s bibliographic information is:

Yuill, J., M. Zappe, D. Denning, and F. Feer. “Honeyfiles: Deceptive Files for Intrusion

Detection”, Proceedings of the 2004 IEEE Workshop on Information Assurance, pp. 116-

122, West Point, NY, June 2004.

 Proceedings of the 2004 IEEE

 Workshop on Information Assurance

 United States Military Academy, West Point, NY June 2004

 2003 IEEE 200

Honeyfiles: Deceptive Files for

Intrusion Detection

Jim Yuill, Mike Zappe, Dorothy Denning, and Fred Feer

Abstract: This paper introduces an intrusion-
detection device named honeyfiles. Honeyfiles are
bait files intended for hackers to access. The files

reside on a file server, and the server sends an alarm
when a honeyfile is accessed. For example, a
honeyfile named “passwords.txt” would be enticing to
most hackers. The file server’s end-users create

honeyfiles, and the end-users receive the honeyfile’s
alarms. Honeyfiles can increase a network’s internal
security without adversely affecting normal
operations. The honeyfile system was tested by

deploying it on a honeynet, where hackers’ use of
honeyfiles was observed. The use of honeynets to test
a computer security device is also discussed. This
form of testing is a useful way of finding the faulty

and overlooked assumptions made by the device’s
developers.

Index terms – deception, intrusion detection,
computer security, file servers

Introduction

Honeyfiles are an intrusion detection mechanism

based on deception. Specifically, a honeyfile is a

bait file that is intended for hackers to open, and

when the file is opened, an alarm is set off. For

example, a file named passwords.txt could be used

as a honeyfile on a workstation. Hackers who gain

unauthorized access to the workstation will be

lured by the file’s name, and when they open the

file an alarm will be triggered.

The concept of deploying bait files against hackers

was pioneered by Cliff Stoll during his

investigation of the German hackers who had

penetrated his system at Lawrence Berkeley Labs,

and elsewhere, in search of defense information

that could be sold to the KGB [1]. To determine

the origin of the attacks, Stoll needed a way of

keeping the hackers on-line long enough to trace

their connection. This was done by creating bait

files that would appeal to the hackers and keep

them occupied. The honeyfiles described in this

paper extends Stoll's concept to an automated

intrusion-detection system for end users. It

monitors all file accesses and provides alarms

whenever the bait files are accessed.

Honeyfiles are implemented as a file server

enhancement, and the file server’s users can make

any of their files a honeyfile. Alarms are sent by e-

mail directly to the user, and services can be used

to securely forward the e-mail to a phone or pager.

With honeyfiles, detection mechanisms can be

effectively deployed, as they are placed by the end

users who are intimately familiar with the

network’s file spaces. In addition, when an alarm

 This research was made possible by funding from

The Office of Net Assessment, in the Office of the

Secretary of Defense.

 Proceedings of the 2004 IEEE

 Workshop on Information Assurance

 United States Military Academy, West Point, NY June 2004

 2003 IEEE 201

is sent, those end users can easily and effectively

interpret it.

Honeyfiles can be used to detect unauthorized

access to computers whose file space is mounted

from a file server. For all but the smallest of

organizations, standard industry practice is to store

user and application data on file servers. By

implementing the alarm system on the file server,

honeyfiles provide defense in depth for the file

server’s clients. Also, in protecting the clients,

honeyfiles can detect unauthorized access gained

through unknown attacks, as well as unauthorized

access gained through unintended file-access

permissions.

When effectively deployed, it will be difficult for

hackers to avoid honeyfiles, and honeyfiles show

potential for avoiding some of the problems

frequently encountered by network intrusion-

detection systems (NIDSs), such as high false-

positive rates and also high false-negative rates for

unknown attacks. Honeyfiles offer several

additional benefits, such as the opportunity to

increase a network’s internal security without

impairing its normal operations. Further, the

honeyfile system can be used to detect

unauthorized access to real files (in addition to bait

files), and this provides substantial advantages over

alternative techniques such as cryptographic

checksums for detecting file modification.

A prototype honeyfile system has been

implemented on the Network File Server (NFS),

and it has been tested by subjecting it to hackers.

Honeyfiles, and the prototype, are further described

in the following sections.

file-server's
files

honeyfile users:
(user id & email @)

honeyfile detector:
detects honeyfile access

honeyfile list:
(file name & user id)

honeyfile user interface:
list, add, or delete

records

honeyfile alert log:
* file name & user id
* forensic info

email-to-
phone
service

file-
system
access

honeyfile
user

user's
phone

honeyfile-system datahoneyfile-system functions

File Server with Honeyfile System

1

4

5

3

6

7

honeyfile alarm system:
send email alerts2

Figure 1 : The honeyfile system

 Proceedings of the 2004 IEEE

 Workshop on Information Assurance

 United States Military Academy, West Point, NY June 2004

 2003 IEEE 202

The Honeyfile System

Honeyfiles are implemented by a honeyfile system,

and it provides the necessary file-system and alarm

functions. The file-system functions are

implemented as an enhancement to a network file

server, as illustrated in Figure 1. The system’s

components are numbered in the figure and their

descriptions follow.

Any file within the user’s file space can be a

honeyfile. The honeyfile system provides an

interface whereby file-server users specify their

honeyfiles (1). A file records the system’s

honeyfiles (5). Each record contains a file name

and user ID. Honeyfile alarms are sent as email

messages, so the user also provides an email

address to be used. The email messages are called

email alerts, or simply alerts. A file records the

system’s users (4). Each record contains a user ID

and email address.

To detect access to honeyfiles, the honeyfile

system monitors all file access on the file server

(3). When a honeyfile is accessed, an alert is sent

(2), and it is logged (6). The alert includes the

name of the opened honeyfile, and forensic

information for incident response, such as the IP

address of the computer that opened the file.

The network can be configured for the email alerts

to be sent in a secure manner. Ideally, they will be

sent to an automated service that will call the user’s

cell phone and digitally display the email message

(7). This ensures secure delivery of the alert

should the user’s mail client also be compromised.

Phone delivery also enables the user to be notified

while away from his computer. We implemented a

prototype honeyfile system for NFS, on RedHat

Linux 9. We plan to distribute the prototype as

open source. The prototype is working,

documented and tested. This paper is an

abridgement of the prototype’s documentation.

Using Honeyfiles

Honeyfiles can detect the hacker’s investigation

and copying of files, including:

• the hacker’s personal perusal of the file space.

Hackers can be tricked into opening files with

alluring names that indicate the file is of value.

• the hacker’s use of search tools to find

particular types of files, e.g., file names

containing the string “password”. These tools

can examine file names or contents.

Honeyfiles can be created to match common

hacker searches.

• the hacker’s use of tools like tar and zip, to

copy and steal the contents of entire

directories. Such copying can be detected by

placing honeyfiles in directories that are likely

to be stolen, and the honeyfile’s name will

blend in with the other files, e.g.,

“sysrun1.dll”.

There are four types of files that are generally of

interest to hackers, and that can often be used as

honeyfiles:

• files with information about accessing and

using other systems, such as password files

(passwords.txt), user manuals (customer-

accounts-system.pdf), and security

documentation (vpn- instructions.doc),

• system or application programs that the hacker

may run, but that authorized users would not

run, such as the gcc compiler,

• files that contain evidence of the attack, such

as log files, and

• files that contain information of use other than

hacking, such as credit card numbers,

intellectual property, expected stock market

prices, and military intelligence.

 Proceedings of the 2004 IEEE

 Workshop on Information Assurance

 United States Military Academy, West Point, NY June 2004

 2003 IEEE 203

A honeyfile should be named and located in such a

way that its owner will not be inclined to open it

accidentally. One technique is to give a honeyfile

a name that appears unusual only to its owner. The

unusual name can help jog the owner’s memory

and recognize the honeyfile. For example, a

honeyfile password file could be named complete-

passwords.txt. Its owner has no partial password

files, so the prefix “complete” will help him

recognize the honeyfile.
1

Honeyfiles can contain deceptive content, such as

fake user-IDs and passwords. Deceptive file-

content can take on a plethora of uses and forms,

and it can be used independently of honeyfiles. In

order to concentrate on central honeyfile functions,

this paper does not address deceptive content in

honeyfiles. Instead, it focuses on honeyfile

deceptions involving just file system information,

i.e., the file’s location and its directory entry,

including its name.

Honeyfile Uses

This section addresses honeyfiles’ detection

capabilities, tactical capabilities, and ease of use.

Detection capabilities

Honeyfiles’ detection capabilities include the

following:

• Honeyfiles can detect unauthorized access to

computers and file systems:

The primary strength of honeyfiles is their ability

to detect unauthorized access to computers whose

1
 Unless stated otherwise, this paper’s masculine

pronouns refer to both men and women.

file-space resides on a file server. For example, a

workstation stores its user file-space on a file

server, and the workstation automatically mounts

the file-space at boot time. If a hacker breaks into

the workstation, his presence will be detected if he

opens a honeyfile within the user file space.

In general, honeyfiles detect unauthorized access to

the file spaces on a file server, including: 1)

compromise of the file space’s user ID and

password, 2) compromise of weak or defective

authentication mechanisms on the file server, e.g.,

NFS’ notoriously weak authentication, and 3)

exploitation of errors made in granting file-space

permissions, e.g., accidentally making the file

space “world readable”.

• Honeyfiles can be used to detect unauthorized

access gained through unknown attacks:

Honeyfiles detect the hacker after he gains

unauthorized or unintended access. The detection

mechanism is independent of the specific

techniques used to gain access. This is one of

honeyfiles’ primary contributions. Honeyfiles

offer a unique opportunity for detecting attackers

who are able to defeat conventional defenses. This

makes honeyfiles especially useful for protecting

high-value systems that are subject to such skilled

attacks.

• Hackers can be highly vulnerable to honeyfile

deceptions:

Honeyfiles take advantage of several deception

vulnerabilities in most hackers’ intelligence

collection and analysis: 1) when hackers initially

access a file space, they must search it in order to

locate valuable data. If the hacker’s search can be

anticipated, honeyfiles can be placed where he is

likely to encounter them. 2) The hacker’s limited

knowledge of the file space makes it difficult for

him to discern what truly belongs there, and his

naiveté makes it easy to create deceptive

honeyfiles. 3) It can be very difficult for the

hacker to detect a honeyfile before opening it. The

 Proceedings of the 2004 IEEE

 Workshop on Information Assurance

 United States Military Academy, West Point, NY June 2004

 2003 IEEE 204

honeyfile deception is created using a small

amount of information, i.e., the file’s directory

entry, and usually, there is no way for the hacker to

cross-verify the information, and 4) In most

instances, if the target wants to know a honeyfile’s

contents, his only option is to open the file and

trigger the alarm.

• Honeyfiles can be used to protect a wide

variety of files and computer systems:

A honeyfile can be almost any file stored on a file

server. In addition to regular data files, they can be

files used by application programs, such as

attachments within a mail client. For example, a

company’s executive email discloses corporate

plans that will predictably affect the company’s

stock price. Such information could be extremely

valuable to hackers. Security personnel can work

with the executives to place honeyfiles within their

mail clients. Honeyfiles can also be used to protect

application programs. For example, a web-server’s

cgi-bin directory can be populated with empty

honeyfiles named after notoriously vulnerable

scripts.

• Honeyfiles show potential for avoiding some

of the problems encountered by network

intrusion-detection systems (NIDSs):

NIDSs are typically very weak at detecting

unknown attacks, whereas honeyfiles can detect

unknown attacks and even access gained through

unintentional file-access permissions. Also, NIDSs

can generate an exorbitant volume of false alarms.

In contrast, honeyfiles show the potential for

having a much lower false alarm rate. Further,

with NIDSs, false alarms are often investigated by

a centralized security group that does not work

directly with the protected data, making

investigation difficult. In contrast, honeyfile users

can accurately and easily dismiss many false

alarms because of their familiarity with the

protected data.

Honeyfiles make it possible for alarms to be

deployed by the personnel who create and manage

information assets. In contrast, when NIDSs are

deployed by a centralized security group, it can be

difficult for them to accurately understand the

network’s changing information assets.

• The honeyfile system can be used to detect

unauthorized access to real files, and it offers

some substantial advantages over

cryptographic checksums:

In addition to detecting access to deceptive

honeyfiles, the honeyfile system can be used to

detect access to real files. For example, when a

workstation user leaves work for the day, he could

use the honeyfile system to set alarms for all of his

files.

The honeyfile system can be easily extended to

provide alerts for honeyfiles when they are

changed. A popular technique for detecting file

changes involves creating and storing

cryptographic checksums. The files’ checksums

are periodically recalculated to detect changes to

the files. Tripwire is a commercial product that

uses this checksum technique.

For detecting changed files on a file server, the

extended honeyfile system provides two substantial

improvements over the use of checksums: 1) the

honeyfile system detects changes when they occur,

whereas the checksum technique detects changes

during periodic, and often infrequent, execution,

and 2) the honeyfile system is simpler than the

checksum technique. The honeyfile system resides

on the file server and an end user only has to

specify the honeyfiles. With the checksum

technique, the checksums must be periodically

calculated by the end user, or he must grant file

access to a separate system that calculates the

checksums. If the user calculates the checksums,

he must securely store the binaries and checksums.

 Proceedings of the 2004 IEEE

 Workshop on Information Assurance

 United States Military Academy, West Point, NY June 2004

 2003 IEEE 205

For a balanced assessment of checksums, it should

be noted that checksums can protect local file

systems, whereas honeyfiles can not. Also, the use

of both checksums and honeyfiles can provide

defense in depth for detecting file changes.

Tactical capabilities

Honeyfiles’ tactical capabilities stem mostly from:

1) decentralized deployment: the network’s end

users create and place alarms, and 2) centralized

implementation: the alarm mechanism resides on

the file server rather than on its clients.

• By enabling end-users to create alarms, the

detection mechanisms can be effectively

deployed and the alerts effectively interpreted:

If honeyfiles are created and placed well, it can be

difficult for hackers to avoid them, resulting in a

low false negative rate. End users are intimately

familiar with the data they create and manage.

Honeyfiles make it possible for users to create and

place alarms where they are most needed and

where they will be most effective. With some

basic instruction on security and honeyfile tactics,

users can effectively deploy honeyfiles. Also, end

users can evaluate and improve their alarms’

effectiveness because they receive alerts directly.

Further, end users can adapt their honeyfile use as

the network and its threats change.

Honeyfile users can accurately discern between

true and false positives because they create the

honeyfiles and receive the alerts. For instance, if a

user accidentally opens a honeyfile, the resultant

alert can be recognized as a false positive. If an

alert is sent when the user is not accessing his file

space, the alert can be recognized as a true positive.

• Honeyfiles support defense-in-depth for the

file server’s clients:

Honeyfiles provide the file server’s clients with an

alarm system that resides outside of the client

itself, and this adds a layer of depth to the client’s

defenses. When a hacker breaks into a client, the

honeyfile’s alarm mechanism is on the file server,

not on the client. If the honeyfile’s alarm

mechanism was on the client, the alarm would be

vulnerable to attack or detection by the hacker,

especially when the hacker has “rooted” the client

computer. Alerts are sent by e-mail, and they can

be made to travel over a secure channel.

• Honeyfiles can provide the security function of

deterrence, and they can support incident

response:

In addition to detecting attacks, honeyfiles can

deter attacks. Honeyfiles have an affect that is

similar to landmines: if hackers know honeyfiles

are being used, the use can dissuade them from

hacking, and the use can slow hackers down by

making them cautious and uncertain. Honeyfiles

are also useful for incident response. Investigators

can view all of the alerts for a network, and

collectively, they may reveal a hacker’s

capabilities, intentions, or courses of action.

Ease of use

Honeyfiles’ ease of use is advantageous to both

end users and security administrators:

• Honeyfiles can enhance a network’s internal

security without impairing normal operations:

Networks typically use a relatively low level of

internal security, as additional security is

burdensome and costly. For example, extra access

controls make resource sharing difficult, and

making IDSs more sensitive increases their false

alarm rates. Honeyfiles can provide a means of

increasing internal security without impairing

operations. Honeyfiles have little adverse affect on

legitimate computer use. Also, honeyfiles can be

an effective deterrent for insider hackers because

 Proceedings of the 2004 IEEE

 Workshop on Information Assurance

 United States Military Academy, West Point, NY June 2004

 2003 IEEE 206

they, like all other network users, will have been

informed of the honeyfiles’ availability and use.

• Honeyfiles are an effective deception because

they can be easily created, require little

falsehood, and involve little risk:

A honeyfile is integrated within a real file space,

and this real context makes the honeyfile deception

easy to create and difficult to detect. Also,

honeyfiles themselves involve little falsehood—

just a directory entry. Further, honeyfiles involve

little risk.

• Implementing the alarm system on the file

server makes honeyfiles available to almost all

network computers:

Honeyfiles can be created by any computer that

uses the file server. Honeyfiles can be used by

computers with a wide variety of operating systems

and file systems. The alarm system does not have

to be ported to the network’s various operating

systems, e.g., Windows and Unix. Also, having a

single alarm system makes it easier to train users.

• Implementing the alarm system on the file

server centralizes security management

functions:

Having a single alarm system makes the system’s

maintenance and defense easier, as the system

resides in one place, rather than on each of the

client computers. Further, having a single alarm

system makes it easier for network security

personnel to monitor the alarm system’s overall use

and effectiveness.

Enhanced Functions

Earlier sections described basic honeyfile

functions, and this section describes some

enhancements that greatly improve honeyfile use.

These improvements have to do with maintaining

realism and controlling alarms.

Operational systems change over time, and so too

must most honeyfiles if they are to be believable.

A file’s MAC times record when it was created,

last modified, and last accessed. Honeyfiles that

portray in-use files must have their MAC times

periodically updated. The honeyfile system can

solve this problem by periodically updating MAC

times, within user-defined parameters.

If deceptive content is being used, it may also need

to change over time. Although deceptive content is

not addressed here, there is a noteworthy technique

for automatically updating a file’s deceptive

content. The honeyfile’s contents can mirror a

source file that is hidden from the target, and the

honeyfile system can periodically update the

honeyfile from the source.

Honeyfile use can also be improved by providing

controls for selectively generating alerts. Some

processes and users must be permitted to open

honeyfiles without setting off alarms, such as tape-

backup processes and the root user.

Honeyfile Limitations

Honeyfiles’ primary limitations are as follows:

• Honeyfiles may not be viable in file spaces

that require regular searching:

Honeyfiles will not be viable if file search tools

generate frequent and unavoidable false alarms.

The honeyfile system could accommodate searches

by enabling users to temporarily suspend their

honeyfiles’ alerts. However, a suspension function

introduces vulnerabilities: users may forget to

resume honeyfile alerts, and the function could be

hacked.

 Proceedings of the 2004 IEEE

 Workshop on Information Assurance

 United States Military Academy, West Point, NY June 2004

 2003 IEEE 207

• Honeyfiles are appropriate for file spaces that

are accessible to one person or a small group:

Honeyfiles are likely to be problematic if placed in

a file space that is used by many people. Honeyfile

information would have to be communicated to the

group. Also, false alarms may be frequent and

difficult to investigate.

• Honeyfiles have tactical weaknesses that limit

their use:

Like most deceptions, honeyfiles provide uncertain

effectiveness against an individual attack. Many

other security measures, such as strong encryption,

are much more certain. Also, honeyfile use will be

limited if the target does not tend to explore the file

system.

There are some circumstances in which honeyfiles

can be defeated. There are ways in which a hacker

can identify real files, and if he opens only them,

he will avoid honeyfiles. For example, a hacker

can use a keystroke logger to learn what files are

being used, and then open only them. Another

honeyfile vulnerability is overloading of the alert

mechanism.

• Honeyfiles require end-user involvement and

skill:

Effective honeyfile deployment requires user

participation. It cognitively taxes users by

requiring them to manage and track honeyfiles.

Also, it requires users to have some security savvy

as well as adeptness with computers. Not all users

will have the time or skills needed to use

honeyfiles. However, security personnel can

provide some simple training that will be sufficient

for many users. Another potential cost of

honeyfiles is the inadvertent deception of friendly

personnel.

Using a Honeynet to Test
Honeyfiles

The honeyfile system was tested by deploying it on

the honeynet and thereby subjecting it to hacking.

Three hacking incidents were observed, and each

involved a different hacker. The three hackers

were students from North Carolina State University

who are skilled in computer security. The hackers

accessed a honeyfile system containing error

reports and manuals for a mainframe system. Each

of the hackers was detected by at least one

honeyfile. The hackers did not find the file space

very interesting, and they did not search it

diligently. This suggests that honeyfiles are more

likely to be detected if they are near the file space’s

root, where the hacker will start searching.

Honeynets show much promise as a means for

testing security devices. They provide a realistic

setting in which hackers can test the device. The

testing can be performed unwittingly by real

hackers or by those recruited for the task. There is

a significant advantage in using testers from

outside of the security device’s development team.

Outside testers may reveal the developers’ faulty

and overlooked assumptions. Such errors are a

common source of security vulnerabilities, and

they are very difficult for developers to find

themselves.

Building the honeynet was non-trivial and

substantially more time consuming than we

expected. Constructing deceptive files, file

content, and system footprints (e.g., file time-

stamps) was especially challenging, as all the

falsehood had to be made consistent and

believable.

Conclusion

After years of research and development, computer

security remains an error-prone task and, in some

respects, a loosing battle. Computer security’s

 Proceedings of the 2004 IEEE

 Workshop on Information Assurance

 United States Military Academy, West Point, NY June 2004

 2003 IEEE 208

chronic problems call for wholly new approaches.

Deception works in a fundamentally different way

than conventional security. Conventional security

tends to work directly with the hacker’s actions,

e.g., to prevent them or to detect them. Deception

manipulates the hacker’s thinking to make him act

in a way that is advantageous to the defender.

Being fundamentally different, deception can be

strong where conventional security is weak.

Honeyfiles are a promising tool for intrusion

detection. They offer significant advantages where

conventional intrusion detection is weak. A

prototype honeyfile system has been constructed

and tested, and we plan to distribute it as open

source.

References

[1] Stoll, C. The Cuckoo's Egg, Doubleday, 1989.

Authors

Jim Yuill is a PhD student in the Computer

Science Department at North Carolina State

University. This paper is part of his thesis

research. Jim previously worked at IBM in

operating systems development. jimyuill-at-

pobox.com

Mike Zappe built the honeyfile prototype. He is

currently a Unix kernel developer at Seclarity.

zapman-at-zappe.us

Dr. Dorothy Denning is a Professor in the

Department of Defense Analysis at the Naval

Postgraduate School. She is an ACM Fellow, and

the recipient of several awards, including the

National Computer Systems Security Award.

dedennin-at-nps.navy.mil

Fred Feer is retired from a career with the U.S.

Army counterintelligence, CIA, RAND and

independent consulting. Deception has been an

interest and area of professional specialization for

over 40 years. ffeer-at-earthwave.net

